How has COVID-19 impacted the public discourse around vaccines? A comparative analysis of Twitter

Abstract
This study examines the public discourse about vaccines on Twitter during the COVID-19 pandemic and compares it with the discourses about vaccines before the pandemic. Discourse, users’ profile, content, tone, vaccines, and sources of information were manually coded. We have identified a diversity of discourses related to vaccines. The discourse that has stood out the most during the pandemic is related to pandemic management measures. Nevertheless, both denialist and anti-denialist discourses are reduced compared to the previous period. Besides this, less polarization and more neutral discourse were identified during the pandemic. The two periods are expressly marked by tweets with content related to opinions and personal experiences regarding vaccines. Some of them are characterized, in general, by informality in how the users communicate their ideas. Interestingly, users from the medical-scientific sphere did not participate more in Twitter during the pandemic. There were fewer posts including scientific findings and more tweets about patient resources. On the other hand, the media and journalists were very active in this period by disseminating information and issuing vaccine opinions, reflecting their essential role in health crises. However, the presence of television channels, such as Fox News, can be an indication of conservative ideas on vaccines. Thus, the discourses have expressed different meanings in relation to the issue and disputed their legitimacy in this symbolic and virtual market.
References
Alam, K. N., Khan, M. S., Dhruba, A. R., Khan, M. M., Al-Amri, J. F., Masud, M. & Rawashdeh, M. (2021). Deep Learning-Based Sentiment Analysis of COVID-19 Vaccination Responses from Twitter Data. Computational and Mathematical Methods in Medicine, 2021(ID4321131), 1-15. https://www.doi.org/10.1155/2021/4321131
Aleixandre-Benavent, R., Castelló-Cogollos, L. & Valderrama-Zurián, J.-C. (2020). Información y comunicación durante los primeros meses de COVID-19. Cronología, infodemia y desinformación, noticias falsas, investigaciones en curso y papel de los especialistas en información. El Profesional de la Información, 29(4), 1-17. https://www.doi.org/10.3145/epi.2020.jul.08
Ali, G. G. M. N., Rahman, M. M., Hossain, M. A., Rahman, M. S., Paul, K. C., Thill, J. C. & Samuel, J. (2021). Public Perceptions of COVID-19 Vaccines: Policy Implications from US Spatiotemporal Sentiment Analytics. Healthcare, 9(9), 1-32. https://www.doi.org/ 10.3390/healthcare9091110
Ansari, T. J. & Khan, N. A. (2021). Worldwide COVID-19 vaccines sentiment analysis through Twitter content. Electronic Journal of General Medicine, 18(6), 1-10. https://www.doi.org/10.29333/ejgm/11316
Araújo, I. & Cardoso, J. M. (2007). Comunicação e saúde. Coleção Temas em Saúde. Rio de Janeiro: Fiocruz.
Catalan-Matamoros D. (2020). La comunicación sobre la pandemia del COVID-19 en la era digital: manipulación informativa, fake news y redes sociales. Revista Española de Comunicación en Salud S1, 5-8. https://www.doi.org/10.20318/recs.2020.5531
Auxier, B. & Anderson, M. (2021, April 7). Social Media Use in 2021. Pew Research Center. Retrieved from https://www.pewresearch.org/internet/2021/04/07/social-media-use-in-2021/
Bardin, L. (2010). Análise de conteúdo. Coimbra: Edições 70.
Berro, M. (2021). La pandemia de COVID-19, Twitter y la comunicación científica. Revista Médica del Uruguaí, 37(3), 1-2.
Bi, D., Long, J.K., Zhang, X. & Yang, J. (2021). Analysis on health information acquisition of social network users by opinion mining: case analysis based on the discussion on COVID-19 vaccinations. Journal of Healthcare Engineering, 2021, 1-11.
Bonnevie, E., Gallegos-Jeffrey, A., Goldbarg, J., Byrd, B. & Smyser, J. (2021). Quantifying the Rise of Vaccine Opposition on Twitter during the COVID-19 Pandemic. Journal of Communication in Healthcare, 14(1), 12-19. https://www.doi.org/10.1080/17538068.2020.1858222
Bourdieu, P. (1989). O poder simbólico. Lisboa: Difel.
Bruno Kessler Foundation (2020). Fake news in the time of C-19. Retrieved from https://members.tortoisemedia.com/2020/03/23/the-infodemic-fake-news-coronavirus/content.html
Constatinou, C. S. (2022). “Symbolic Power” in the official COVID-19 field and language. Human Review, 11(1), 105-116. https://www.doi.org/10.37467/gkarevhuman.v11.3080
Costa, S. L. M. & Alves, W. (2019). Evaluating resistances to health promotion campaigns with Discourse Analysis. Revista Española de Comunicación en Salud, 2, S9-S19. https://www.doi.org/10.20318/recs.2019.4424
Dixon, S. (2022, August 22). Number of social media users worldwide from 2018 to 2027. Pew Research Center. Retrieved from https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/
Engel-Rebitzer, E., Stokes, D. C., Buttenheim, A., Purtle, J. & Meisel, Z. F. (2021). Changes in Legislator Vaccine-Engagement on Twitter before and after the Arrival of the COVID-19 Pandemic. Human Vaccines & Immunotherapeutics, 17(9), 2868-2872. https://www.doi.org/ 10.1080/21645515.2021.1911216
El Mundo. (2023). Twitter aumenta el límite de los tuits hasta los 10 000 caracteres solo si pagas. Retrieved from https://www.elmundo.es/tecnologia/2023/04/14/64399683e4d4d886678b45e0.html
European Centre for Disease Prevention and Control. (n.d.). Vaccine hesitancy. Retrieved from https://www.ecdc.europa.eu/en/immunisation-vaccines/vaccine-hesitancy
Fischer, R. M. B. (2001). Foucault e a análise do discurso em educação. Cadernos de Pesquisa, 114, 197-223.
Foucault, M. (1984). Microfísica do poder. 4. ed. Rio de Janeiro: Graal.
Foucault, M. (1986). A Arqueologia do saber. Rio de Janeiro: Forense.
Ghanem, B., Rosso, P. & Rangel, F. (2020). An emotional analysis of false information in social Media and news articles. ACM Transactions on Internet Technology, 20(2), 1-18.
Grace, P. J. (2021). Nurses spreading misinformation. American Journal of Nursing, 121(12), 49-53. https://www.doi.org/10.1097/01.NAJ.0000803200.65113.fd
Greene, C. M. & Murphy, G. (2021). Quantifying the effects of fake news on behavior: evidence from a study of COVID-19 misinformation. Journal of Experimental Psychology: Applied, 27(4), 773-784. https://www.doi.org/10.1037/xap0000371
HelpTwitter. (2023). Acerca de X Premium. Retrieved from https://help.twitter.com/es/using-x/x-premium
Heravi, B. & Harrower, N. (2016). Twitter journalism in Ireland: Sourcing and trust in the age of social media. Information, Communication & Society, 19(9), 1194–1213. https://www.doi.org/10.1080/1369118X.2016.1187649
Hu, T., Wang, S., Luo, W., Zhang, M., Huang, X., Yan, Y., ”¦ Li, Z. (2021). Revealing public opinion towards COVID-19 vaccines with twitter data in the United States: spatiotemporal perspective. Journal of Medical Internet Research, 23(9), e30854. https://www.doi.org/10.2196/30854
Ittefaq, M., Kamboh, S. A. & Abwao, M. (2021). COVID-19 vaccine selfie: a modest endeavor to increase vaccine acceptance. Psychology & Health, 1-5. https://www.doi.org/10.1080/08870446.2021.1957888
Janetzko, D. (2016). The role of apis in data sampling from social media. In The SAGE Handbook of Social Media Research Methods (pp. 146-160). London: SAGE. https://www.doi.org/10.4135/9781473983847
Johnson, N. F., Velásquez, N., Restrepo, N. J., Leahy, R., Gabriel, N., El Oud, S., ”¦ Lupu, Y. (2020). The online competition between pro- and anti-vaccination views. Nature, 582, 230-243. https://www.doi.org/10.1038/s41586-020-2281-1
Katz, M. & Nandi, N. (2021). Social media and medical education in the context of the COVID-19 pandemic: scoping review. JMIR Medical Education, 7(2), e25892. https://www.doi.org/10.2196/25892
Larson, H. J., Jarrett, C., Eckersberger, E., Smith, D. M. & Paterson, P. (2014). Understanding vaccine hesitancy around vaccines and vaccination from a global perspective: a systematic review of published literature, 2007–2012. Vaccine, 32(19), 2150-2159. https://www.doi.org/10.1016/j.vaccine.2014.01.081
Luqmani, Y. A. & Hashim, A. L. (2022). The COVID-19 pandemic: A health crisis managed or a panic response with disastrous future consequences? Medical Principles and Practice, 31(1), 1-10. https://www.doi.org/10.1159/000520258
Lyu, J. C., Han, E. L. & Luli, G. (2021). COVID-19 vaccine–related discussion on twitter: topic modeling and sentiment analysis. Journal of Medical Internet Research, 23(6). https://www.doi.org/10.2196/24435
Manco Vega, A. (2021). Análisis de los discursos de médicos vertidos en Twitter sobre la validez de posibles tratamientos contra la COVID-19. Revista Española de Comunicación en Salud, 12(1), 75-88. https://www.doi.org/10.20318/recs.2021.5593
McKay, S. & Tenove, C. (2021). Disinformation as a Threat to Deliberative Democracy. Political Research Quarterly, 74, 703-717. https://www.doi.org/10.1177/1065912920938143
Monaci, S. (2021). The Pandemic of Conspiracies in the COVID-19 Age: How Twitter Reinforces Online Infodemic. Online Journal of Communication and Media Technologies, 11(4), e202120. https://www.doi.org/10.30935/ojcmt/11203
Miyake, E. & Martin, S. (2021). Long covid: online patient narratives, public health commu-nication and vaccine hesitancy. Digital Health, 7, 205520762110596. https://www.doi.org/10.1177/20552076211059649
O’Connor, C. & Joffe, H. (2020). Intercoder reliability in qualitative research: debates and practical guidelines. International Journal of Qualitative Methods, 19, 1-13. https://www.doi.org/10.1177/1609406919899220
Ortiz-Ospina, E. (2019). The rise of social media. Retrieved from https://ourworldindata.org/rise-of-social-media
Park, S., Massey, P. M. & Stimpson, J. P. (2021). Primary source of information about COVID-19 as a determinant of perception of COVID-19 severity and vaccine uptake: source of information and COVID-19. Journal of General Internal Medicine, 36(10), 3088-3095. https://www.doi.org/10.1007/s11606-021-07080-1
Pêcheux, M. (1988). Semântica e discurso: uma crítica à afirmação do óbvio. Campinas: Unicamp.
Pershad, Y., Hangge, P., Albadawi, H., & Oklu, R. (2018). Social medicine: Twitter in healthcare. JCM, 7(121), 1-9.
Puri, N., Coomes, E. A., Haghbayan, H. & Gunaratne, K. (2020). Social media and vaccine hesitancy: new updates for the era of COVID-19 and globalized infectious diseases. Human Vaccines & Immunotherapeutics, 16(11), 2586-2593. https://www.doi.org/10.1080/21645515.2020.1780846
Quezada, A. (2020). Los orígenes de la vacuna. Revista de Medicina Clinica – Condes, 31(3-4), 367-373.
Rodrigues, A. D. & Braga, A. A. (2014). Discourse analysis and ethnomethodological discourse analysis. Matrizes, 8(2), 117-134. https://www.doi.org/10.11606/issn.1982-8160.v8i2p117-134
Ruiz, J. B. & Bell, R. A. (2021). Predictors of intention to vaccinate against COVID-19: Results of a nationwide survey. Vaccine, 39(7), 1080-1086.
Sajjadi, N. B., Nowlin, W., Nowlin, R., Wenger, D., Beal, J. M., Vassar, M. & Hartwell, M. (2021). United States internet searches for “infertility” following COVID-19 vaccine misinformation. Journal of Osteopathic Medicine, 121(6), 583-587. https://www.doi.org/10.1515/jom-2021-0059
Scannell, D., Desens, L., Guadagno, M., Tra, Y., Acker, E., Sheridan, K., ”¦ Fulk M. (2021). COVID-19 vaccine discourse on twitter: a content analysis of persuasion techniques, sentiment and mis/disinformation. Journal of Health Communication, 26(7), 443-459. https://www.doi.org/10.1080/10810730.2021.1955050
Singh, L., Bansal, S., Bode, L., Budak C., Chi, G., Kawintiranon K., ”¦ Wang, Y. (2020). A first look at COVID-19 information and misinformation sharing on Twitter. Social and Information Networks, ArXiv:2003.13907, 1-24. Retrieved from http://arxiv.org/abs/2003.13907
Statista. (2023). Most popular social networks worldwide as of October 2023, ranked by number of monthly active users. Biggest social media platforms 2023 | Statista
Tandoc Jr., E. C., Jenkins, J. & Craft, S. (2019). Fake news as a critical incident in journalism. Journalism Practice, 13(6), 673-689.
Tomeny, T. S., Vargo, C. J. & El-Toukhy, S. (2017). Geographic and demographic correlates of autism-related anti-vaccine beliefs on Twitter, 2009-15. Social Science & Medicine, 191, 168-175.
Trecebits (2023, August 14). Los 10 países donde más se usa X (antes Twitter). https://www.trecebits.com/los-10-paises-que-mas-usan-twitter/
Unesco (2018). Journalism, Fake News & Disinformation. France: Unesco.
Ventola, C. L. (2014). Social media and health care professionals: benefits, risks, and best practices. P&T, 39(7), 491-520.
Vosoughi, S., Roy, D. & Aral, S. (2018). The spread of true and false news online. Science, 359(6380), 1146-1151. https://www.doi.org/10.1126/science.aap9559
Wahbeh, A., Nasralah, T., Al-Ramahi, M. & El-Gayar, O. (2020). Mining physicians’ opinions on social media to obtain insights into COVID-19: mixed methods analysis. JMIR Public Health and Surveillance, 6(2), e19276. https://www.doi.org/10.2196/19276
Wardle, C. & Derakhshan, H. (2017). Information disorder: Toward an interdisciplinary framework for research and policymaking. Strasburg: Conselho Europeu.
Wiysonge, C.S., Ndwandwe, D., Ryan, J., Jaca, A., Batouré, O., Anya, B., M. & Cooper, S. (2021). Vaccine hesitancy in the era of COVID-19: could lessons from the past help in divining the future? Human Vaccines & Immunotherapeutics, 18(1), 1-3. https://www.doi.org/10.1080/21645515.2021.1893062
World Health Organization. (2019). Ten threats to global health in 2019. Retrieved from https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019
The Verge (2020, May 12). How the ‘plandemic’ video hoax went viral. Retrieved from https://www.theverge.com/2020/5/12/21254184/how-plandemic-went-viral-facebook-youtube
Section
RIGHTS TRANSFER
By submitting the article for evaluation and subsequent publication in Communicaton & Society, the AUTHOR grants exclusive economic and/or exploitation rights: reproduction, distribution, public communication, transformation/translation/creation of derivative works, and commercialisation to the University of Navarra through its Publications Service, for the maximum legal period in force -the author's lifetime and seventy years after his or her death or declaration of death-, in any country, and in any of the current and future publishing modalities, both in print and electronic versions.
In the event that the article is not accepted for publication, this transfer of rights lapses with the communication of the refusal to the AUTHOR.
The AUTHOR affirms that the article is unpublished, that it has not been sent simultaneously to another publication medium and that the rights have not been transferred exclusively previously. He is responsible to the University of Navarra through its Publications Service for the authorship and originality of his work, as well as for all pecuniary charges that may arise for the University of Navarra through its Publications Service, in favor of third parties due to actions, claims or conflicts arising from the breach of obligations by the AUTHOR.