The Power of Data Journalism: The Effects of Data-Driven News Reports in Correcting Climate Change Misinformation

Mahmoud-Mohamed-Abdel Haleem
Hagar Talaat-Alnajjar
391

Abstract

The alarming increase of misinformation poses a significant threat to complex issues such as climate change, especially considering the proliferation of new media, which has significantly contributed to the dissemination and reception of misinformation. The present study aimed to examine how a corrective news article featuring data visualisation influences the reduction of misconceptions and the correction of misinformation regarding climate change after readers are exposed to the stimulus. The study investigated how readers’ preexisting beliefs influence the mitigation of misconceptions when exposed to news content. This study adds to ongoing conversations about creating corrective news reports to reduce the negative impacts of misinformation surrounding climate change. A quasi-experimental study was carried out online involving 186 members of the Egyptian community. The results indicate that data journalism can reduce the cognitive dissonance that causes audiences to accept misinformation. The findings indicate that data-driven journalism utilising interactive graphs is effective in altering the public’s existing beliefs and knowledge while also demonstrating its ability to persuade and counter misinformation. The audience with low to moderate prior knowledge of climate change may demonstrate a diminished ability to thoroughly analyse and compare the information presented.

Keywords:
Misinformation, readers’ misperception, prior beliefs, prior knowledge, data journalism, climate change, data visualisations

Authors

Mahmoud-Mohamed-Abdel Haleem
Hagar Talaat-Alnajjar

References

Abdallah, M. M. & Youssef, M. (2023). Role of social media in enhancing climate change literacy among Egyptian users. Journal of Public Relations and Advertising Research, 25, 1-25. https://doi.org/10.21608/sjocs.2023.299518

Abdelaty, H., Weiss, D., & Mangelkramer, D. (2023). Climate policy in developing countries: Analysis of climate mitigation and adaptation measures in Egypt. Sustainability, 15(11), 9121. https://doi.org/10.3390/su15119121

Abdellatif, M. A. (2023). Framing climate change on TV news websites: A study of Nile News, Sky News Arabia, and CGTN Arabic. Arab Media & Society, 34, 21-38. https://doi.org/10.70090/mama22fc

Allen, D. & McAleer, M. (2018). Fake news and indifference to scientific fact: President Trump’s confused tweets on global warming, climate change and weather. Scientometrics, 117(1), 625-629. https://doi.org/10.1007/s11192-018-2847-y

Álvarez-García, O., Sureda-Negre, J., Comas-Forgas, R., & Oliver-Trobat, M. (2023). The Spanish population’s interest in climate change based on Internet searches. Humanities and Social Sciences Communications, 10(1), 1-9. https://doi.org/10.1057/s41599-023-01736-5

Apuke, O. D., Omar, B., & Tunca, E. A. (2022). Effect of fake news awareness as an intervention strategy for motivating news verification behaviour among social media users in Nigeria: A quasi-experimental research. Journal of Asian and African Studies, 58(6), 888-903. https://doi.org/10.1177/00219096221079320

Bode, L. & Vraga, E. (2015). In Related News, That Was Wrong: The Correction of Misinformation Through Related Stories Functionality in Social Media. Journal of Communication, 65(4), 619-638. https://doi.org/10.1111/jcom.12166

Campbell, D. T. & Stanley, J. C. (2015). Experimental and quasi-experimental designs for research. Ravenio Books.

Chan, M.-P. S., Jones, C., Hall Jamieson, K., & Albarracín, D. (2017). Debunking: A Meta-Analysis of the Psychological Efficacy of Messages Countering Misinformation. Psychological Science, 28(11), 1531-1546. https://doi.org/10.1177/0956797617714579

Chang, C.-T. & Van, L. (2023). Influence of Online User Information Verification on the Effect of Health Misinformation Correction Provided by a Peer: A Natural Quasi-Experiment. Communication Reports. [Preprint], 1-13. https://doi.org/10.1080/08934215.2023.2232412

Chen, H., Ning, X., Wang, L., & Yang, J. (2018). Acquiring New Factual Information: Effect of Prior Knowledge. Frontiers in Psychology, 9, 1-14. https://doi.org/10.3389/fpsyg.2018.01734

Cheng, H. & González-Ramírez, J. (2021). Trust and the Media: Perceptions of Climate Change News Sources Among US College Students. Postdigit Sci Educ, 3(3), 910-933. https://doi.org/10.1007/s42438-020-00163-y

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd Ed.). Lawrence Erlbaum Associates.

Connor Desai, S. & Reimers, S. (2023). Does explaining the origins of misinformation improve the effectiveness of a given correction? Memory & Cognition, 51(2), 422-436. https://doi.org/10.3758/s13421-022-01354-7

Cook, J. (2022). Teaching about Our Climate Crisis: Combining Games and Critical Thinking to Fight Misinformation. American Educator, 45(4), 12-19. Retrieved from https://eric.ed.gov/?id=EJ1321545

Cook, J., Ecker, U., Trecek-King, M., Schade, G., Jeffers-Tracy, K., Fessmann, J., Claire Kim, S., Kinkead, D., Orr, M., Vraga, E., Roberts, K., & McDowell, J. (2022). The cranky uncle game —combining humor and gamification to build student resilience against climate misinformation. Environmental Education Research, 29(4), 613-629. https://doi.org/10.1080/13504622.2022.2085671

Dakhode, S., Chaware, A., Muntode, P., Ingole, A., & Joshi, A. (2021). Perception about myths and facts regarding COVID-19 pandemic infection among science and technology faculties. Journal of Education and Health Promotion, 10(288), 1-10. https://doi.org/10.4103/jehp.jehp_870_20

Del Vicario, M., Alessandro, B., Zollo, F., Petroni, F., Scala, A., Caldarelli, G., Stanley, E., & Quattrociocchi, W. (2016). The spreading of misinformation online. Proceedings of the National Academy of Sciences, 113(3), 554-559. https://doi.org/10.1073/pnas.1517441113

Deters, F. G. & Mehl, M. R. (2012). Does posting Facebook status updates increase or decrease loneliness? An online social networking experiment. Social Psychological and Personality Science, 4(5), 579-586. https://doi.org/10.1177/1948550612469233

Eisenhardt, K. M. (1989). Building theories from case study research. Academy of Management Review, 14(4), 532-550. https://doi.org/10.5465/amr.1989.4308385

Fazio, L., Brashier, N., Payne, K., & Marsh, E. (2015). Knowledge does not protect against illusory truth. Journal of Experimental Psychology: General, 144(5), 993-1002. https://doi.org/10.1037/xge0000098

Flynn, D., Nyhan, B., & Reifler, J. (2017). The Nature and Origins of Misperceptions: Understanding False and Unsupported Beliefs about Politics. Political Psychology, 38(1), 127-150. https://doi.org/10.1111/pops.12394

Garreton, M., Morini, F., Celhay, P., Dörk, M., & Parra, D. (2023). Attitudinal effects of data visualisations and illustrations in data stories. IEEE Transactions on Visualisation and Computer Graphics, 29(8), 3501-3516. https://doi.org/10.1109/tvcg.2023.3248319

Geidner, N., Pjesivac, I., Imre, I., Coman, I., & Yuran, D. (2015). The Role of Interactive Graphics in Reducing Misperceptions in the Electorate. Visual Communication Quarterly, 22(3), 133-145. https://doi.org/10.1080/15551393.2015.1069195

Guan, T. & Wang, Q. (2022). Examining the democratic potential of data journalism in curing misinformation. Journalism Practice, 16(10), 1-19. https://doi.org/10.1080/17512786.2022.2124433

Hadlington, L., Harkin, L., Kuss, D., Newman, K., & Ryding, F. (2022). Perceptions of fake news, misinformation, and disinformation amid the COVID-19 pandemic: A qualitative exploration. Psychology of Popular Media, 11(3), 315-330. https://doi.org/10.1037/ppm0000387

Holmes, D. & Richardson, L. (2020). Research Handbook on Communicating Climate Change. Cheltenham: Edward Elgar Publishing. https://doi.org/10.4337/9781789900408

Hullman, J., & Diakopoulos, N. (2011). Visualization Rhetoric: Framing Effects in Narrative Visualization. IEEE Transactions on Visualization and Computer Graphics, 17(12), 2231-2240. https://doi.org/10.1109/tvcg.2011.255

Junco, R., Heiberger, G., & Loken, E. (2010). The effect of Twitter on college student engagement and grades. Journal of Computer Assisted Learning, 27(2), 119-132. https://doi.org/10.1111/j.1365-2729.2010.00387.x

Lazard, A. & Atkinson, L. (2014). Putting Environmental Infographics Center Stage. Science Communication, 37(1), 6-33. https://doi.org/10.1177/1075547014555997

Lewandowsky, S., Ecker, U., & Cook, J. (2017). Beyond Misinformation: Understanding and Coping with the “Post-Truth” Era. Journal of Applied Research in Memory and Cognition, 6(4), 353-369. https://doi.org/10.1016/j.jarmac.2017.07.008

Li, J. & Wagner, M. (2020). The Value of Not Knowing: Partisan Cue-Taking and Belief Updating of the Uninformed, the Ambiguous, and the Misinformed. Journal of Communication, 70(5), 646-669. https://doi.org/10.1093/joc/jqaa022

Liao, Q. V. & Fu, W.-T. (2013). Beyond the filter bubble: Interactive effects of perceived threat and topic involvement on selective exposure to information. In CHI ‘13: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 2359-2368). ACM. https://doi.org/10.1145/2470654.2481326

Lim, V. Y., Peralta, L. M. M., Rubel, L. H., Jiang, S., Kahn, J. B., & Herbel-Eisenmann, B. (2023). Keeping pace with innovations in data visualizations: A commentary for mathematics education in times of crisis. ZDM - Mathematics Education, 55(1), 109-118. https://doi.org/10.1007/s11858-022-01449-0

Lopezosa, C., Pérez-Montoro, M., & Guallar, J. (2022). Data visualization in the news media: Trends and challenges. In L. M. G. González & L. F. Romero Rodríguez (Eds.), Technology, business, innovation, and entrepreneurship in Industry 4.0 (pp. 315-334). Springer. https://doi.org/10.1007/978-3-031-17960-0_16

Lwin, M., Lee, S. Y., Panchapakesan, C., & Tandoc, E. (2021). Mainstream News Media’s Role in Public Health Communication During Crises: Assessment of Coverage and Correction of COVID-19 Misinformation. Health Communication, 38(1), 160-168. https://doi.org/10.1080/10410236.2021.1937842

Ma, S. & Zhang, H. (2021). Opinion expression dynamics in social media chat groups: An integrated quasi-experimental and agent-based model approach. Complexity, 2021, 2304754. https://doi.org/10.1155/2021/2304754

Mahmoud, M. A. (2017). Impact of climate change on the agricultural sector in Egypt, The handbook of environmental chemistry, 74, 213-227. Springer. https://doi.org/10.1007/698_2017_48

Mena, P. (2021). Reducing misperceptions through news stories with data visualisation: The role of readers’ prior knowledge and prior beliefs. Journalism, 24(4), 729-748. https://doi.org/10.1177/14648849211028762

Metzger, M., Hartsell, E., & Flanagin, A. (2015). Cognitive dissonance or credibility? A comparison of two theoretical explanations for selective exposure to partisan news. Communication Research, 47(1), 3-38. https://doi.org/10.1177/0093650215613136

Moore, C., Ruisch, B., Granados Samayoa, J., Shelby, L., Ladanyi, J., & Fazio, R. (2021). Contracting COVID-19: a longitudinal investigation of the impact of beliefs and knowledge. Scientific Reports, 11(1), 20460. https://doi.org/10.1038/s41598-021-99981-8

Naguimbing-Manlulu, M. F. (2021). Climate change narratives in Philippine print news media. Media Asia, 48(3), 190-206.” https://doi.org/10.1080/01296612.2021.1944541

Nyhan, B. (2021). Why the backfire effect does not explain the durability of political mispercep-tions. Proceedings of the National Academy of Sciences, 118(15), e1912440117. https://doi.org/10.1073/pnas.1912440117

Onwuegbuzie, A. & Collins, K. (2007). A typology of mixed methods sampling designs in social science research. The Qualitative Report, 12(2), 281-316. https://doi.org/10.46743/2160-3715/2007.1638

Oshikawa, S. (1968). The Theory of Cognitive Dissonance and Experimental Research. Journal of Marketing Research, 5(4), 429-430. https://doi.org/10.2307/3150270

Pandey, A. V., Manivannan, A., Nov, O., Satterthwaite, M., & Bertini, E. (2014). The Persuasive Power of Data Visualisation. IEEE Transactions on Visualisation and Computer Graphics, 20(12), 2211-2220. https://doi.org/10.1109/tvcg.2014.2346419

Pettigrew, A. M. (1990). Longitudinal Field Research on Change: Theory and Practice. Organization Science, 1(3), 267-292. https://doi.org/10.1287/orsc.1.3.267

Petty, R. & Cacioppo, J. (1986). The elaboration likelihood model of persuasion. In R. E. Petty & J. T. Cacioppo (Eds.), Communication and persuasion (pp. 1-24). Springer. https://doi.org/10.1007/978-1-4612-4964-1_1

Reichardt, C. S. (2002). Experimental and quasi-experimental designs for generalized causal inference. Social Service Review, 76(3), 510-514. https://doi.org/10.1086/345281

Rosner, B. A. (2006). Fundamentals of biostatistics (6th Ed.). Thomson-Brooks/Cole.

Schulz, K. F. & Grimes, D. A. (2002). Allocation concealment in randomised trials: Defending against deciphering. The Lancet, 359(9306), 614-618. https://doi.org/10.1016/S0140-6736(02)07750-4

Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental designs for generalized causal inference. Houghton Mifflin.

Tappin, B., Pennycook, G., & Rand, D. (2020). Rethinking the link between cognitive sophistication and politically motivated reasoning. Journal of Experimental Psychology: General, 150(6), 1095-1114. https://doi.org/10.1037/xge0000974

Tasnim, S., Hossain, M., & Mazumder, H. (2020). Impact of Rumors or Misinformation on Coronavirus Disease (COVID-19) in Social Media. Journal of Preventive Medicine and Public Health, 53(3), 171-174. https://doi.org/10.3961/jpmph.20.094

Treen, K., Williams, H., & O’Neill, S. (2020). Online misinformation about climate change. WIREs Climate Change, 11(5), 665. https://doi.org/10.1002/wcc.665

Urban, J. & Schweiger, W. (2013). News Quality from the Recipients’ Perspective. Journalism Studies, 15(6), 821-840. https://doi.org/10.1080/1461670x.2013.856670

Vidigal, R. & Jerit, J. (2022). Issue Importance and the Correction of Misinformation. Political Communication, 39(6), 1-22. https://doi.org/10.1080/10584609.2022.2123580

Weir, C. J. & Lees, K. R. (2003). Comparison of stratification and adaptive methods for treatment allocation in an acute stroke clinical trial. Statistics in Medicine, 22(5), 705-726. https://doi.org/10.1002/sim.1366

Welch, C., Piekkari, R., Plakoyiannaki, E., & Paavilainen-Mäntymäki, E. (2011). Theorising from case studies: Towards a pluralist future for international business research. Journal of International Business Studies, 42(5), 740-762. https://doi.org/10.1057/jibs.2010.55

Wood, T. & Porter, E. (2019). The Elusive Backfire Effect: Mass Attitudes’ Steadfast Factual Adherence. Political Behaviour, 41(1), 135-163. https://doi.org/10.1007/s11109-018-9443-y

Yin, R. K. (1981). The case study crisis: Some answers. Administrative science quarterly, 26(1), 58-65.”

Yin, R. K. (2009). Case study research: Design and methods (4th Ed., Vol. 5). Sage.

Zhao, H., Xu, J., Iyendo, T. O., Apuke, O. D., & Gever, V. C. (2023). The effectiveness of using audio-visual based media intervention for promoting social media literacy skills to curtail fake news on social media: A quasi-experimental investigation. Information Development, 39(4), 502-518. https://doi.org/10.1177/02666669231217236


Metrics

Search GoogleScholar



Downloads

Download data is not yet available.

Section

Articles