The Effect of Hypo-, Normo-, and Hypercapnia Induced by Mechanical Ventilation on Intrapulmonary Shunt

J. H. Boix, F. Alvarez, M. Tejeda, E. Peydro, D. Olivares and A. Arnau

UCI, Hospital Gran Via 12006-Castellón (Spain)

(Received on December 15, 1993)

J. H BOIX, F. ALVAREZ, M. TEJEDA, E. PEYDRO, D. OLIVARES and A. ARNAU. The Effect of Hypo-, Normo-, and Hypercapnia Induced by Mechanical Ventilation on Intrapulmonary Shunt. Rev. esp. Fisiol. (J. Physiol. Biochem.), 50 (2), 89-96. 1994.

The effects of hypo-, normo- and hypercapnia on the variations in arterial oxygenation and their indices in critical patients with acute respiratory failure (ARF) receiving mechanical ventilation are studied. It is a prospective and randomized study carried out in multidisciplinary ICU. Fifteen ARF patients, intubated and mechanically ventilated, were studied within the first 48 h of evolution. Three stages were delimited: I) 30 min after the beginning of anaesthesia; II) 30 min after adding 30 cm of dead space (VD); III) 30 min after replacing the previous VD with VD of 60 cm. Ventilation parameters and FiO2 were kept stable. Stage I was characterized by respiratory alkalosis and stage II by normal acid-base balance with an increase in PaO2 (p<0.01) and a decrease in intrapulmonary shunt (Qsp/Qt) (p<0.001); the indices alveolar to arterial oxygen tension gradient [P(A-a)O2], respiratory index (R.I.) and estimated shunt (Est Shunt) also decreased significantly, whereas arterial to alveolar oxygen tension ratio (PaO₂/PAO₂) and arterial oxygen tension to inspired oxygen fraction ratio (PaO2/FiO2) increased significantly. In stage III there was pure hypercapnic acidosis, with decreases in PAO₂ (p<0.001), P(A-a)O₂ (p<0.01) and R.I. (p<0.05), while PaO₂, Qsp/Qt, Est Shunt, PaO₂/PAO₂ and PaO₂/FiO₂ remained stable with respect to the previous situation. The observed PaO_2 differs (p<0.05) from the expected PaO₂ in stage III. It is suggested that local or regional modifications of pulmonary perfusion are responsible for the observed variations. The P(A-a)O2 and R.I. indices do not make it possible to differentiate the causes of arterial hypoxemia in the presence of hypercapnia.

Key words: Hypo-, normo- and hypercapnia, Oxygenation indices, Intrapulmonary shunt, Dead space, Acute respiratory failure.

Correspondence to J. H. Boix. (Tel. 964-244400; Fax: 964-21-4482). The respiratory alkalosis produced by mechanical ventilation, has been identified as a cause of hypoxemia (6, 21), which improves when $PaCO_2$ is normalized or increased (15, 19, 25). A moderate hypercapnia has been suggested for the treatment of acute respiratory failure (ARF) by the results observed in experimental animals (28).

It is now increasingly recognized that permissive hypercapnia (PerH) is a strategy for the management of patients on mechanical ventilation (MV) in several circumstances, such as severe adult respiratory distress syndrome (ARDS), infectious pneumophaties or severe airflow obstruction (1, 17, 23).

Measurement of intrapulmonary shunting (Qsp/Qt), a widely used method for monitoring disturbances of pulmonary oxygen transfer in critically ill patients, involves calculation of arterial and mixed venous oxygen contents. In circumstances where mixed venous blood samples are not readily available, oxygen tension-based indices such as the alveolar to arterial oxygen tension gradient [P(A-a) O_2], the arterial to alveolar oxygen tension ratio [PaO₂/PAO₂], the arterial oxygen tension to inspired oxygen fraction ratio (PaO₂/FiO₂), and Respiratory Index $[R.I. = P(A-a)O_2/PaO_2]$ or oxygen content-based indices such as the Estimated Shunt (Est Shunt) (7, 12, 13, 22), are widely utilized to reflect Q sp/Q t.

The purpose of the present work is to determine the effects of hypo-, normo-, or hypercapnia on the variations in arterial oxygenation indices observed in critical ARF patients receiving mechanical ventilation.

Materials and Methods

The characteristic of the studied patients, as well as the materials and methods used in the present report have been previously described (5).

Rev. esp. Fisiol., 50 (2), 1994

After a basal period (Stage I) of induced hypocapnia by mechanical ventilation, the $PaCO_2$ is normalized (Stage II) and increased (Stage III) by the addition of dead space (VD) (2, 18, 29, 31). At the end of each of the three stages, simultaneous arterial and mixed venous blood samples were obtained and analyzed.

In addition, tension oxygen alveolar (PAO₂), P(A-a)O₂, PaO₂/PAO₂, PaO₂/ FiO₂, R.I., Est Shunt and physiologic shunt (Qsp/Qt), were determined by:

 $PAO_2 = FiO_2 (PB-PH_2O) - (1.25 PaCO_2)$

$$Est Shunt = \frac{CcO_2 - CaO_2}{CcO_2 - CaO_2 + 3.5}$$

$$\dot{Q}sp/\dot{Q}t = \frac{CcO_2 - CaO}{CcO_2 - CvO_2}$$

 $CcO_2 = Hb[(1-HbCO) 1.34 + 0.0031 PAO_2]$. The correction factors [1.0 - HbCO] were: 0.985, 0.975 and 0.965 when PAO₂ was higher than 150 mm/Hg, oscillated between 150 - 125 mm/Hg or 125-100 mm/Hg, respectively.

$$CaO_2 = SaO_2 (1.34 \text{ Hb}) + 0.0031 \text{ Pa}O_2$$

 $CvO_2 = SvO_2 (1.34 \text{ Hb}) + 0.0031 \text{ Pv}O_2$

The expected PaO_2 values of each one of the patients were obtained after correcting their observed PaO_2 values with respect to the acid-base variations, by Kelman's formula, using a program with the original subrutine written in Fortram (16).

The paired Student's t test and the Pearson correlation analysis were utilized in the statistical analysis of the data. After repeating the analysis of variance about the same basic data of the three stages described, the same dintels of significance were obtained. To favour simplicity the values of Fisher's F are eluded. All values are reported as mean \pm SD. Values of p < 0.05 were considered significant.

Results

The parameters FiO₂, VE, PEEP, Cot and Raw were kept unmodified in the three stages. The initial situation of pure respiratory alkalosis in the acid-base balance evolves to normality in stage II, and of pure hypercapnic acidosis in stage III, after the significant increase in PaCO₂ subsequent to the augmentation in dead space (R = 0.91, p<0.001) (table I). The addition of a 30 cm VD caused a significant improvement in PaO₂ (table II), as it also did in the tension indices $(P(A-a)O_2,$ PaO₂/PAO₂, PaO₂/FiO₂ and R.I.) and in the content of O_2 (Est Shunt and \ddot{Q} sp/ \dot{Q} t). The PAO₂ dropped significantly. With the addition of 60 cm VD, PaO2 and the indices PaOv/PAO₂, PaO₂/FiO₂, Est Shunt and Qsp/Qt remained stable with respect to stage II; however, a further decrease was produced in PAO₂, as well as in P(A-a)O₂ and R.I. Table II also shows the significant correlation found between PAO₂ and the P(A-a)O₂ and R.I. indices. Such a relationship does not exist with all the other indices, except for PaO₂/PAO₂ after the addition of the 60 cm VD

The figure 1 shows the observed PaO_2 values and the expected PaO_2 for the Bohr effect; adverting their similiarities during the stage II but underlining their significant difference (p < 0.05) in stage III (observed $PaO_2 = 105 + 36.9$ and expected $PaO_2 = 117.6 + 47.7$ mmHg).

Fig. 1. Detail of the fixation curves of PaO₂ in human blood Bohr pH 7.2; 7.4; 7.6 (37 °C). Operative sequence Bohr effect. * Awaited effect that does not take place.

Discussion

The respiratory alkalosis observed in patients receiving mechanical ventilation has been identified as the cause of hypoxemia (6, 25); its origin has been attributed to variable and imprecise physiopathological mechanisms (7, 9, 14).

The genesis of a hypoxemia, excluding some special circumstances (a decrease of FiO_2 , intracardiac right-left shunt, etc.) that were not present in our patients, stem from an imbalance in VA/Q; depending on different pathologies, the prevalent alterations are either in ventilation or in perfusion.

	rable i. nespiratory and Acit		<i>i</i> 3.
Parameter	(Stage I) BASAL	(Stage II) VD 30 cm	(Stage III) VD 60 cm
FiO ₂ (%)	39.0 ± 7.6	39.0 ± 7.4	38.0 ± 7.8
VE (L/min)	14.23 ± 1.32	14.22 ± 1.31	14.18 ± 1.29
PEEP (ml/H ₂ O)	0.7 ± 1.8	0.8 ± 1.7	0.7 ± 1.8
Cot (ml/cm H₂O)	37.7 ± 10.4	35.8 ± 9.4	35.9 ± 12.4
Raw (ml/ H ₂ O)	12.3 ± 6.1	10.0 ± 5.3	11.4 ± 6.6
рН	7.46 ± 0.06***	7.38 ± 0.06	7.28 ± 0.06***
PaCO₂ (mm/Hg)	30.8 ± 3.35***	40.5 ± 5.70	54.8 ± 6.67***

*** p<0.001, vs II. n = 15.

Rev. esp. Fisiol., 50 (2), 1994

J. H BOIX, F. ALVAREZ, M. TEJEDA, E. PEYDRO, D. OLIVARES AND A. ARNAU

	(Stage	l) Basal		(Stage I	II) VD 30 cm		(Stage	III) VD 60 cr	E
Parameter	Σ́ ± SEM			x ± SEM			x ± SEM		
PAO ₂ (mmHg)	245.0 ± 54.3***			230.1 ± 53.9			208.4 ± 54.32***		
PaO ₂ (mmHg)	96.1 ± 39.8**			106.8 ± 41.9			105.2 ± 36.92		
P(A-a)O ₂	148.4 ± 53.1***	0.71 ⁺⁺	-0.39	123.5±59.8	0.74+++	-0.51+	103.4 ± 58.2**	0.79 ⁺⁺⁺	-0.37
PaO ₂ /PAO ₂	0.4 ± 0.15***	-0.26	0.77 ⁺⁺	0.48 ± 0.18	-0.47	0.73++	0.53 ± 0.19	-0.59+	0.56 ⁺
PaO ₂ /FiO2	244.7 ± 89.0***	-0.17	0.83+++	278.0 ± 102.9	-0.36	0.82+++	276.9 ± 89.0	-0.33	0.80+++
R.I.	1.86 ± 1.06***	0.34	-0.73++	1.44 ± 1.06	0.53 ⁺	-0.70++	1.18±0.96*	0.59 ⁺	-0.59+
Est Shunt	9.83 ± 12.3**	0.15	-0.70++	4.67 ± 19.2	0.45	-0.64++	6.23±13.9	0.39	-0.61+
Qsp/Qt	9.58 ± 14.4*	0.16	-0.73++	5.83 ± 12.6	0.46	-0.62++	6.54±22.0	0.42	-0.55+
Qsp/Qt • p < 0.05, ** p < 0.0 + p < 0.05, ++ p < 0.	9.58 ± 14.4* 1, *** p < 0.001 respe 01 , +++ p < 0.001 r	0.16 oct to the stage espect to the r	-0.73 ⁺⁺ 3 II. n= 15. r values. n = 15.	5.83 ± 12.6	0.46	-0.62++		6.54 ± 22.0	6.54 ± 22.0 0.42

•

Rev. esp. Fisiol., 50 (2), 1994

It has been shown, moreover, that hypoxemia secondary to hypocapnia, in patients receiving mechanical ventilation, improves when $PaCO_2$ is normalized, and that one of the $PaCO_2$ increase with the addition of VD (8, 10, 15, 18, 28). In all our patients, with ARF and anesthetized, there was a basal situation of respiratory alkalosis. They also presented a relative hypoxemia as a function of the FiO₂ employed (39 %), which is reflected in PaO₂ and the gas exchange indices (P(A-a)O₂, PaO₂/PAO₂, PaO₂/FiO₂, R.I., Est Shunt and Qsp/Qt).

The addition of 30 cm of VD produces a significant improvement of PaO₂, an increase in PaO₂/PAO₂ and PaO₂/FiO₂ and a decrease in P(A-a)O₂, R.I., Est Shunt and Qsp/Qt. Such modifications are produced while the ventilatory parameters FiO₂, VE, PEEP, Cot and Raw remain stable. Therefore, they cannot be attributed to variations in the characteristics of mechanical ventilation or in the "quantity" of alveolar ventilation, although its "quality" is modified by reinhalation of expired CO₂ (27, 28), which increases PaCO₂ and normalizes blood pH.

The improvement of PaO_2 and of the PaO_2/FiO_2 index cannot be explained by modifications in ventilation or in FiO₂ since it always remained stable; neither can it be explained by an increase in PAO₂, which actually decreased.

Nevertheless, there is a decrease in $P(A-a)O_2$, reflecting an improvement in VA/\dot{Q} , that matches the significant decrease in both $\dot{Q}sp/\dot{Q}t$ and Est Shunt.

It can be deduced that if the numerator of the VA/Q balance is quantitatively maintained, which is reflected in an improvement at the clinical level, then either qualitative changes (Bohr effect) are produced or there are regional or general changes in perfusion (20, 24, 26, 30), which depend only on the increase in $PaCO_2$ and/or the normalization of the pH (3, 4, 11). The similarity in the observed PaO_2 increment with respect to the expected PaO_2 , suggests that the Bohr effect is responsible for this change in stage II.

With the addition of 60 cm of VD, the levels of PaO_2 , the PaO_2/PAO_2 and PaO_2/FiO_2 indices, as well as the Est Shunt and Qsp/Qt, are maintained at similar values with respect to the previous stage. A further decrease is observed in PAO_2 , $P(A-a)O_2$ and R.I. Such changes are interpreted as a direct function of the increase in $PaCO_2$, since VA/Q is maintained as the stability factor in the mentioned parameters.

The increase in PaCO₂, i.e. in PACO₂, entails a decrease in PAO₂ which subsequently decreases P(A-a)O₂ and R.I., since FiO₂ has remained unchanged. The absence of significant variations in the PaO_2/PAO_2 index, in contrast to those observed in P(A-a)O2 and R.I., reflects the greater sensitivity of these two with respect to variations in PaCO₂. Nevertheless, it should be emphasized that the PaO_2/PAO_2 index shows a correlation with PAO₂ when 60 cm of VD are added. This suggests that, to some extent and according to the reasons pointed out previously, the PaO₂/PAO₂ index might be related to the changes in PaCO₂. The apparent relations observed between PaO₂ and the PaO₂/PAO₂ and PaO₂/FiO₂ indices, as well as between PAO₂ and the indices P(A-a)O2 and R.I., led to their verification. The data presented in table II to a great extent allow us to confirm them in the present study. The systematic correlation of the Est shunt and Qsp/Qt with PaO_2 is also particularly apparent as well as the absence of such a correlation with PAO₂. Nevertheless, a direct correlation is repeatedly observed between PAO₂ and $P(A-a)O_2$ which decrease simultaneously (improve), whereas $P(A-a)O_2$ and PaO_2 are correlated only between stages I and Π

The disassociation between the observed PaO_2 and the expected PaO_2 incapacitates the operative sequence of the Bohr effect and makes the pulmonar vascular changes responsible for the absence of the awaited change in stage III (fig 1).

At the same time, the levels reached in the cases studied (pH 7.28 and $PaCO_2$ 54 mm/Hg), given their magnitude, might have any adverse effects on pulmonary perfusion in general.

All this suggests that "extra-alveolar" modifications, due to changes in pulmonary local or regional flow, are responsible for the improvement in VA/Q that occurs with normocapnia (8, 10, 15, 20, 26, 30). The modifications produced in the $P(A-a)O_2$ and R.I. indices, would be justified by hypercapnia, although this might not entail an improvement of the pulmonary function under the circumstances of the present study.

J. H. BOIX, F. ÁLVAREZ, M. TEJEDA, E. PEYDRO, D. OLIVARES y A. ARNAU. Efectos de la hipo, normo e hipercapnia inducidas por la ventilación mecánica sobre el Shunt intrapulmonar. Rev. esp. Fisiol. (J. Physiol. Biochem.), 50 (2), 89-96, 1994.

Se estudia el efecto de la hipo, normo e hipercapia sobre las variaciones de la oxigenación arterial y sus índices en 15 pacientes críticos, con fallo respiratorio agudo (FRA) que reciben ventilación mecánica desde las primeras 48 horas de evolución. El estudio es prospectivo y aleatorio y se realiza en UCI multidisciplinaria. Se delimitan tres estadios: I) a los 30 min de iniciar la anestesia; II) a los 30 min de añadir 30 cm de espacio muerto (VD); y III) a los 30 min de la substitución del VD anterior por otros 60 cm. Los parámetros de ventilación no se alteran y la fracción inspirada de oxígeno (FiO2) es estable. El estadio I se caracteriza por una alcalosis respiratoria y el II por un equilibrio ácido-base normal con incremento de la PaO₂ (p < 0,01) y descenso del shunt intrapulmonar (Qsp/Qt) (p<0,05). La diferencia alveolo arterial de oxígeno P(A-a)O2, indice respiratorio (R. I.) y shunt estimado (Est Shunt) muestran descensos significativos, mientras que el cociente arterio alveolar de oxígeno (PaO₂/PAO₂) y la fracción entre la

tension arterial y la fracción inspirada de oxígeno PaO₂/FiO₂ se incrementan significativamente. El estadio III muestra una acidosis hipercápnica pura, con descensos en la tension alveolar (PAO₂) (p<0,001), PO₂(A-a) (p<0,01) y R.I. (p<0,05) mientras que la PaO₂, Qsp/Qt, Est Shunt, a/A y PaO₂/FiO₂ permanecen estables con respecto a la situacion anterior. La PaO₂ observada es diferente (p<0,05) de la esperada. Todo ello sugiere que las modificaciones extra-alveolares locales o regionales de la perfusión pulmonar son responsables de estas variaciones. Los índices PO₂ (A-a) y R.I. no permiten diferenciar las causas de hipoxemia arterial en presencia de hipercapnia.

Palabras clave: Hipo-, normo-, e hipercapnia, Indices de oxigenación, Shunt intrapulmonar, Espacio muerto, Fallo respiratorio agudo.

References

- Albelda, S. M., Gefter, W. B. and Kelley, M. A. (1983): Am. Rev. Respir. Dis., 127, 360-365.
- Askitopoulou, H., Chakrabarti, M. K. and Morgan, M. (1984): Acta Anaesthesiol. Scand., 28, 348-350.
- 3. Barer, G. R., McCurrie, J. R. and Shaw, J. W. (1971): Cardiovasc. Res., 5, 490-497.
- Benumof, J. L., Mathers, J. M. and Wahrenbrock, E. A. (1976): J. Appl. Physiol., 41, 466-469.
- Boix, J. H., Marín, J., Enrique, E., Monferrer, J., Bataller, A. and Servera, E. (1994): *Rev. esp. Fisiol.*, 50, 19-26.
- 6. Breivick, H., Grenvick, A., Milllen, E. and Safar, P. (1973): Chest, 63, 525-531.
- Cane, R. D., Shapiro, B. A., Templin, R. and Walther, K. (1988): Crit. Care Med., 16, 1243-1245.
- Culpepper, J. A., Rinaldo, J. E. and Rogers, R. M. (1985): Am. Rev. Respir. Dis., 132, 1075-1077.
- Cherniack, R. M. and Cherniack, L. (1983): Respiration in health and disease (3rd ed.). W. B. Saunders Co. Philadelphia.
- Downs, J. B., Perkins, H. M. and Modell, J. H. (1974): Arch Surg., 109, 519-523.
- Enson, Y., Giuntini, C. and Lewis, M.L.(1964): J. Clin. Invest., 43, 1146-1151.
- 12. Hess, D. and Maxwell, C.(1985): Crit. Care Med., 30, 961-963.

- Hoffstein, V., Duguid, N. and Zamel, N. (1984): J. Lab. Clin. Med., 104, 685-690.
- 14. Hurlow, R. S., Hudson, L. D., Pierson, D. J., Craig, K. C. and Albert, R. K. (1982): Chest, 82, 211.
- 15. Johansen, S. H. and Mourkidou, S. (1969): Acta Anaesth. Scand., 13, 241-246.
- Kelman, G. R., (1966): J. Appl. Physiol., 21, 1375-1376.
- 17. Marinii, J. J. (1990): Clin. Chest. Med., 11, 673-690.
- Martz, K. V., Joiner, J. and Shepherd, R. M. (1979): Management of the patient-ventilator system. C. V. Mosby Co. St. Louis.
- Michenfelder, J. D., Fowler, W. S. and Theye, R. A. (1966): J. Appl. Physiol., 21, 1471-1476.
- 20. Monkcom, W. and Patterson, R. (1972): J. Thorac. Cardiovasc. Surg., 63, 577 584.
- Nunn, J. F. (1977): Applied Respiratory Physiology (2nd ed.). Butterworths, Boston.
- 22. Peris, L. V., Boix, J. H., Salom., J., Segura, V. and Arnau, A. (1983): Crit. Care Med., 11, 888-891.

- 23. Perret, C. and Feihl, F. (1992): Respiratory failure in asthma (2nd ed.). Springer-Verlag, Berlin.
- 24. Prys-Roberst, C., Kelman, G. R. and Greenbaum, R. (1967): Anesthesia, 22, 257-275.
- 25. Prys-Roberts, C. and Kelman, G. R. (1968): J. Appl. Physiol., 25, 80-87.
- Severinghaus, J. W., Swenson, E. W., Finley, M. T., Lategola, M. T. and Willians J. (1961): J. Appl. Physiol., 16, 53-60.
- Shapiro, B. A., Harrison, R. A., Kacmareck, R. M. and Cane, R. D. (1985): Clinical application of respiratory care (3th. ed.). Year Book Medical Publishers. Chicago.
- Slotman, G. J., Machiedo, G. W., Novack, R. T. and Rush, B. F. (1983): Circ. Shock, 11, 187-194.
- 29. Suwa, K. and Bendixen, H.H. (1968): J. Appl. Physiol., 24, 556-562.
- Swenson, E. W., Finley, T. N. and Guzman, S. V. (1961): J. Clin. Invest., 40, 828-835.
- 31. Sykes, M. K. Young, W. E. and Robinson, B. E. (1965): Br. J. Anesth., 37, 314-325.