Amikacin-induced liver toxicity: correlations between biochemical indexes and ultrastructural features in an experimental model

G. Martines* / L. Butturini* / I. Menozzi* / G. Restori* / L. Boiardi* / S. Bernardi* / P. Baldassarri*

SUMMARY

In previous studies, aminoglycosides (AG) as gentamicin (G), dibekacin (D), tobramycin (T), netilmicin (N) and Sysomicin (S) were proved to induce ultrastructural alterations in the liver of experimental animals.

The aim of this study is to investigate the effect of amikacin (AK) on rabbit liver which is commonly used in infections resistant to other AG; this was done studying both the common blood parameters and ultrastructural changes.

The study was accomplished in 24 New Zealand rabbits, twelve received 20 mg/kg AK every 12 hours for 2 weeks.

Thereafter the animals were anesthetized and liver slices were obtained for transmission electron microscopy.

As results obvious signs of primary and secondary microcholestatic associated to mitochondrial cristae detachment and phospholipid aggregations were noted; this last finding was less evident when compared to previous studies employing other AG.

In the AK treated group, blood tests showed a significant increase in only Blood Urea Nitrogen (BUN) and an insignificant rise in AST levels.

Our findings are consistent with an AK induced liver toxicity albeit less evident with respect to the other AG.

Introduction

Amikacin is an aminoglycoside antibiotic proven to be effective in the treatment of Gram-negative infections which are resistant to therapy gentamicin.

Its pharmacokinetics are similar to those of other aminoglycosides: since, in fact, it is a highly polar cation, poorly absorbed at gastrointestinal level and for these reasons must be administered in a parenteral way; furthermore, owing to its physio-chemical characteristics it is not metabolized by the liver and is thus completely excreted by the kidney in an unchanged form (almost exclusively by glomerular filtration), as shown by the discovery in the urine of 96% of the dose administered during the 24 h period 1.

A small aliquota is, however, actively secreted by the hepatocytes in the bile: Rubinstein et al. 2 found 5.5%, 15%, and 9% of the plasmatic concentration of amikacin in the bile, respectively 2, 3 and 4 h after it had been administered.

Ten to twelve h after administration the biliary concentrations of the molecules were higher than the plasmatic ones, on the contrary to other aminoglycosides 3.

Regarding aminoglycoside toxicity in general and that of amikacin in particular, experimental studies and clinical trials have shown that these drugs can be nephrotoxic and ototoxic 4, 5.

The toxicity of these antibiotics is related to the affinity to different body tissues: the stronger the bond higher concentrations in a determined organ, the maximum level is reached in the kidney especially the renal cortex.

The drug also accumulates in other body tissues, however at much lower levels among which the highest-concentration is found in the liver (5 ug/g of tissue) 6.

Not only due to the fact that amikacin accumulates in the liver, but the fact it is also actively secreted by hepatocytes into the bile lead as to believe that not only is it nephrotoxic but it also hepatotoxic.

These hypotesis is supported by an increase in liver enzymes seen in some patients after aminoglycoside administration 7-9.

The fact that aminoglycosides cause liver damage has been shown by experimental models.

In particular, drug-induced ultrastructural alterations were observed in animals given low doses of gentamicin 10, sisomicin 11, dibekacin 12, tobramycin 13 and netilmicin 14 (consisting of phospholipidosis and microcholestasis), accompanied by a significant rise in the AST (gentamicin, tobramycin, netilmicin), ALT (dibekacin) and LDH (tobramycin) indicating functional alteration in the metabolic areas of the cell.

This study was conducted in order to determine if amikacin, in a similar experimental model, is able to induce biochemical and ultrastructural hepatic lesions, also in view of the fact that amikacin was shown to be less nephrotoxic than the other aminoglycosides 5, 15-19.

We used a similar experimental model to determine if it is also less hepatotoxic.

Materials and methods

The research was carried out using 24 "New Zealand" rabbits aged 3 months, weighing and average 2,430 kg (ranging from 2,02 to 2,8 kg) and fed "ad libitum" with a commercial formula (MIL).

After a 7 day period of adaption to the new environment, fasting-blood samples were obtained via an intracardiac cannula and were centrifuged to determine serum urea, creatine, total bilirubin, transaminase, alkaline phosphatase, glucose, uric acid, cholesterol and triglyceride concentrations.

Then we randomly assigned the rabbits to 2 sub-groups of 12 were given
amikacin i.m. 40 mg/kg every 12 hours until the end of the experiment, the other 12 were given placebo and were used as the controls.

The daily amount of AK was determined by multiplying the dose commonly used in man by 5 (i.e. ratio between the metabolic rate of rabbit and man).

Blood samples were again taken 7 and 14 days after the beginning of experiment.

At the end of the study, the animals were anesthesized and liver slices were obtained.

The material was prefixed for 2 hours in a bath of 2.5 % glutaraldehyde solution buffered to a pH of 7.3-7.4 and was afterwards fixed in 1 % buffered Osmium tetroxide solution for 1 hour; finally, it was dehydrated in an acetone solution and embedded in Epon.

Ultra-thin sections were cut with an LKB microtome, contrasted with uranyl acetate and lead citrate according to Reynolds and were then examined under an EM 300 Philips Electron Microscope.

Serum samples were immediately analysed by the SMAC II Technicon System. The data were statistically analysed by a two-way variance analysis (SP-23 design). The criterion of variance homogeneity tested by the Hartley method was always fulfilled.

Results

Ultrastructurally we observed the following alterations in treated rabbit liver when compared to control:

a) a thickening of the pericanalicular web (see fig. 3), a slight enlargement of some biliary canalicula and intracanalicular biliary microthrombosis (see fig. 3-4).

The microvilli on the canalicula were normal both in amount and form.

b) an increased in the number and size of secondary lysosomes (multivesicular bodies, osmiophilic bodies and so forth) in the pericanalicular area (see fig. 3) some of which contained electron-dense lamellar material (phospholipidosis).

c) marked smooth endoplasmic reticulum hyperplasia (see fig. 1-4).

d) small intracytoplasmatic lipid droplets (see fig. 2).

e) alteration of the mitochondrial “cristae” which appear detached (see fig. 1).

Fig. 1.—Rabbit liver treated with amikacin (X 3.400). Binucleus hepatocyte showing a notable smooth endoplasmic reticulum hyperplasia (A), with increase lysosomes number (B), and detachment mitochondrial cristae (C).

Fig. 2.—Rabbit liver treated with amikacin (X 5.700). In this cytoplasmic area, several lipidic droplets are present (A).
Blood parameters

In order to statistically eliminate the effect of spontaneous oscillation concerning the investigated parameters, the significance of the inferences between the trends of the treated and untreated animals were taken into consideration.

According to these criteria, the following differences were observed:

— significant increases in BUN (p = 0.0019 vs control group) (p = 0.0005) evident from the 1st week of treatment (Fig. 5).
— a smaller increase in AST (p = 0.10), close to the level considered statistically significant (Fig. 6).

The other parameters studied showed no alterations neither in treated group nor in untreated animals.

Discussion

In this study, the administration of 40 mg/kg/day of amikacin induced cellular damage which was characterized by primary (see points a and b of the results) and secondary (see points c, d, e) cholestasis and a slight phospholipidosis.

These aspects are similar to those observed under similar conditions after administration of gentamicin, sisomicin, libekacin, tobramicin and netilmicin.

This indicates a common mechanism of cellular damage in aminoglycosides. The damage seems to relate to the ability of these drugs to bind to both plasma membranes and to organelar membranes, for example, lysosomes and mitochondria membranes.

Aminoglycosides are polycations which permit them to bind to negatively loaded acidic phospholipids and in particular, to the phosphatidilinositol of the membranes.

Thus the formed aminoglycoside-phosphainositol compounds induce an alteration of phosphoinositide metabolism which has repercussions on membrane function.

In particular, these aminoglycosides appear to have a greater affinity for lysosomes.

After active transport into the intracellular compartement aminoglycoside do link to the lysosomal phosphoinositol and thereby cause an inhibition of phospholipase A1 and sphingomyelinases.

This leads to a reduction in the intralysosomal phospholipidic catalysis which in turn leads to an accumulation of phosphatidicholine and sphingomyeline and thus phospholipidosis.
An examination of the structure of amikacin explains why it causes a less widespread phospholipidosis than that seen with the other aminoglycosides. Since the energy of interaction between amikacin and the lipidic bilayer is less than that seen with other aminoglycosides, this leads to less penetration of amikacin into the membrane, and consequently less phospholipase enzyme inhibition.

These properties are due to the number of aminogroups which interact with the phosphoric groups of phosphatidilinositol,

Only two in fact, of the four amino-groups of amikacin, form a bond with phospholipids; this is in comparison to 3 to 5 aminogroup possessed by other aminoglycosides.

This might explain amikacin’s lower nephrotoxicity when compared to the other aminoglycosides.

Another important alteration which needs discussion is the presence of smooth endoplasmic reticulum hyperplasia (SER is almost invisible under normal conditions in rabbit liver).

Either an enzymatic induction or an induced microcholestasis is probably responsible for the SER hyperplasia seen with amikacin.

A functional alteration in the plasma membrane, due to the ability of phosphatidilinositol to bind to plasma membrane, might be the cause of the microcholestasis. Aminoglycosides cause an alteration of phosphoinositide metabolism.

This determines a membrane dysfunction, which in turn alters Ca++ transport and or intracellular Ca++ homeostasis, and therefore, alters the hepatocytes response to various stimuli.

Furthermore, aminoglycoside form compounds with phosphoinositol which causes a reduced Na-K ATPase membrane activity.

It is a well-known fact that a decreased Na-K ATPase membrane activity leads to decreases in biliary secretion.

Finally, by altering mitochondrial metabolism, aminoglycoside decrease the oxidative phosphorylation, and the result is less energy is available for biliary secretion.

Of the blood parameters, only AST increase but not significantly.

Since AST resides in the inner mitochondrial membrane, we attribute the rise in AST to mitochondrial damage.

Unlike the other aminoglycosides, amikacin did not alter the level of the other blood parameters studied. This is probably due to the specific biochemical properties of amikacin discussed earlier.

Conclusions

Amikacin induces a damaging effect not only in the kidney where it reaches high concentration, but also in liver tissue.

This is shown by a microcholestasis an slight phospholipidosis after amikacin administration in animals.

Even though it is difficult to draw clinical conclusion from an experimental study, we would like emphasize the following points:

— before administering aminoglycosides in general and amikacin in particular, the clinician should take into account that their spectrum of adverse effects is much more vast than was commonly considered;

— caution in also required before the therapeutic use of amikacin in patients with liver diseases because it can both further damage already diseased cells and it increases the risk of nephrotoxicity.
amikacin appears to be less toxic for both the kidney and the liver than the other aminoglycosides currently available.

However, further comparative studies on aminoglycoside toxicity are needed to confirm our results.

Bibliografía

TOXICIDAD HEPATICA INDUCIDA: CORRELACIONES ENTRE LOS PARAMETROS BIOQUIMICOS Y LAS ALTERACIONES ULTRAESTRUCTURALES EN UN MODELO EXPERIMENTAL

Resumen

Se ha demostrado en estudios previos que los aminoglucósidos como la gentamicina, dibekacina, tobramicina, netilmicina y sisomicina producen alteraciones ultraestructurales hepáticas en el animal de experimentación.

El objetivo de este estudio es investigar el efecto de la amikacin a dosis habitualmente utilizadas en infecciones resistentes a otros aminoglucósidos sobre el hígado de conejo, estudiando tanto los parámetros bioquímicos normales como las alteraciones ultraestructurales.

El estudio se realizó en 24 conejos Ne-Weland, de los cuales 12 recibieron 20 mg/kg de amikacin cada 12 horas durante 2 semanas. Los cortes de hígado se obtuvieron con un microscopio electrónico de transmisión. Se observaron signos evidentes de microcolestasis parenquimatosa secundaria junto con separación de las crestas mitocondriales y agregados fosfolipídicos. Este último signo era menos marcado en comparación con otros estudios previos con el resto de aminoglucósidos. En el grupo de pacientes tratados con amikacin, los estudios sanguíneos mostraron un aumento significativo de la urea sanguínea y un aumento no significativo de los niveles de AST.

Nuestros hallazgos confirman la existencia de toxicidad hepática inducida por amikacin, aunque menos evidente que la que producen otros aminoglucósidos.
UNIVERSIDAD DE NAVARRA

ADMISION DE ALUMNOS PARA EL CURSO 1988-89

PAMPLONA

FACULTADES Y ESCUELAS TECNICAS SUPERIORES

- DERECHO
- MEDICINA
- FILOSOFÍA Y LETRAS
- **Divisiones**
 - Filología
 - Geografía e Historia
 - Filosofía y Ciencias de la Educación
- FARMACIA
- CIENCIAS BIOLOGICAS
- CIENCIAS DE LA INFORMACION
- Sección de Periodismo
- CIENCIAS ECONOMICAS Y EMPRESARIALES
- ARQUITECTURA
- DERECHO CANONICO
- TEOLOGIA

ESCUELAS UNIVERSITARIAS

- ENFERMERIA
- INGENIERIA TECNICA INDUSTRIAL
 - **Especialidades**
 - Construcción de maquinaria
 - Máquinas eléctricas

OTROS CENTROS

- ESCUELA DE AYUDANTES TECNICOS DE LABORATORIO, dependiente de la Facultad de Ciencias
- INSTITUTO DE ARTES LIBERALES
- INSTITUTO DE LENGUA Y CULTURA ESPAÑOLAS (ILCE)
- INSTITUTO DE IDIOMAS

SAN SEBASTIAN

- ESCUELA TECNICA SUPERIOR DE INGENIEROS INDUSTRIALES
 - **Especialidades**
 - Mecánica
 - Electrónica
 - Organización industrial
- INSTITUTO SUPERIOR DE SECRETARIADO Y ADMINISTRACION (ISSA)

EL SERVICIO DE ADMISION

Facilita la información y los impresos necesarios para formalizar las solicitudes de admisión. La admisión es requisito indispensable para la incorporación de nuevos alumnos a cualquier Centro de la Universidad de Navarra.

LAS DIRECCIONES DEL SERVICIO DE ADMISION

Para todos los Centros de Pamplona:

- Servicio de Admisión
- Edificio Central
- Universidad de Navarra
- Tel. (948) 25 27 00
- 31080 PAMPLONA

E.T.S. de Ingenieros Industriales

- Urdaneta, 7
- Tel. (943) 4666411 - 466511
- 20006 SAN SEBASTIAN

Instituto Superior de Secretariado y Administración:

- Cuesta Aldapeta, s/n.
- Tel. (943) 46 71 46
- 20080 SAN SEBASTIAN

PLAZO PARA SOLICITUD DE ADMISION

Las solicitudes de admisión se presentarán **antes del 20 de junio**.