Human red cells from prenatal stages of hemopoiesis. Lithium flux components

J.L. Corchs
G. Mujica
R.E. Serrani
132

Abstract

Red cells from umbilical cord with increased lithium content were submitted to different experimental conditions in order to study lithium flux components. There appeared three components: First, an ouabain-sensitive component, related to Na+ replacement with Li+ in the primary active Na+/K+ transport system. The magnitude of this fraction is greater than in adults’ red cells. Second, an outside sodium-dependent Li+ efflux fraction, corresponding to the Li+/Na+ countertransport system with Vmax and Km values of 0.1 (mmol/I cells ”¢ h) and 2.58 (mmol/1), respectively. The Na+o-affinity for lithium efflux in this system is greater in neonatal than in adults’ red cells. Third, a leak fraction with an equal value to that reported in adults’ red cells. Furthermore, the possible non-existence of a bumetanide-sensitive lithium flux fraction was shown in neonatal red cells.

Keywords:
Neonatal red cells, Lithium transport

Authors

J.L. Corchs
G. Mujica
R.E. Serrani

References

Agam G., Deutsch I., Karplus, M. and Livne, A. A. (1993): Biol. Neonate, 64,13-17. https://doi.org/10.1159/000243965

Barton, T. C. and Brown, D. A. J. (1964): J.Gen. Physiol., 47, 839-849, 3. Blum, S. F. and Oski, F. A. (1969): Pediatrics, 43, 396-401. https://doi.org/10.1542/peds.43.3.396

Canessa, M. (1984): In "Recent clinical and experimental advances", Vol. 3: "Erythrocytes membranes". A. R. Liss. New York, pp.293- 315.

Chow, E. I. H. and Chen D. (1982): Biochim.Biophys. Acta, 685, 196-202. https://doi.org/10.1016/0005-2736(82)90098-0

Duhm J., Eiseenried, F., Becher, B. F. and Greil W. (1976): Pflttgers Arch., 364, 147-155. https://doi.org/10.1007/BF00585183

Dunham, P. B. and Ellory, J. C. (1981): J. Physiol., 318, 511-530. https://doi.org/10.1113/jphysiol.1981.sp013881

Ehrlich, B. E. and Diamond, J. M. (1979): Cell Physiol., 6, C102-C110. https://doi.org/10.1152/ajpcell.1979.237.1.C102

Fukuda, M., Dell, A. and Fukuda, M. (1984): J. Biol. Chem., 259, 4782-4791. https://doi.org/10.1016/S0021-9258(17)42915-2

Funder, J., Tosteson, D. C. and Wieth, J. O. (1978): J. Gen. PhysioL, 71, 721 -746. https://doi.org/10.1085/jgp.71.6.721

Hass, M. and McManus, J. (1983): Am. J. Physiol., 245, C235-C240. https://doi.org/10.1152/ajpcell.1983.245.3.C235

Hunt, S. C., Williams, R. R., Smith, J. B., Ash, O. K. (1986): Hypertension, 8, 30-36. https://doi.org/10.1161/01.HYP.8.1.30

Linderkamp, O., Wu, P. Y. K. and Meiselman, H. J. (1983): Pediat. Res., 17, 250-253. https://doi.org/10.1203/00006450-198304000-00003

Matoth, Y., Zaizov, R., Varsano, I. (1971): Acta Paed.Scand. 60, 317-323. https://doi.org/10.1111/j.1651-2227.1971.tb06663.x

Matovcik, L. M., Chiu, D., Lubin, B., Mentzer, W. C., Lane, P. A., Mohandas, N. and Schrier, S. L. (1986): Pediat. Res., 20, 1091-1096. https://doi.org/10.1203/00006450-198611000-00006

Pandey, G. N., Sarkady, B., Haas, M., Gunn, R. B., Davis, J. M. and Tosteson, D. C. (1978): J. Gen. Physiol., 72, 23-247.. https://doi.org/10.1085/jgp.72.2.233

Resnick, L. M., Barbagallo, M., Gupta, R. K., Laragh J. H. (1993): Am. J. Hypertens., 6, 413- 417. https://doi.org/10.1093/ajh/6.5.413

Rosskopf, D., Dusing, R. and Siffert, W. (1993): Hypertension, 21, 607-617. https://doi.org/10.1161/01.HYP.21.5.607

Rutherford, P. A., Thomas, T. H., Carr, S. J. and Taylor, R., Wilkinson, R. (1992): Clin. Sci., 82, 301-307. https://doi.org/10.1042/cs0820301

Serrani, R. E. and Corchs, J. L. (1987): Arch. InL Physiol. Biochim., 95, 341-346.

Serrani, R. E., Venera, G., Gioia, I. A. and Corchs, J. L. (1990): Arch. Int. Physiol. Biochem., 98, 27-34. https://doi.org/10.3109/13813459009115734

Stein, W. D. (1986): In "Transport and diffusion across cell membranes". Academic Press, London, pp.231-361. https://doi.org/10.1016/B978-0-12-664660-3.50009-0

Tavassoli, M. (1991): Blood Cells, 1, 269-281.


Metrics

Search GoogleScholar



Downloads

Download data is not yet available.

Section

Articles