Human red cells from prenatal stages of hemopoiesis. Lithium flux components

Abstract
Red cells from umbilical cord with increased lithium content were submitted to different experimental conditions in order to study lithium flux components. There appeared three components: First, an ouabain-sensitive component, related to Na+ replacement with Li+ in the primary active Na+/K+ transport system. The magnitude of this fraction is greater than in adults’ red cells. Second, an outside sodium-dependent Li+ efflux fraction, corresponding to the Li+/Na+ countertransport system with Vmax and Km values of 0.1 (mmol/I cells ”¢ h) and 2.58 (mmol/1), respectively. The Na+o-affinity for lithium efflux in this system is greater in neonatal than in adults’ red cells. Third, a leak fraction with an equal value to that reported in adults’ red cells. Furthermore, the possible non-existence of a bumetanide-sensitive lithium flux fraction was shown in neonatal red cells.
Authors
References
Agam G., Deutsch I., Karplus, M. and Livne, A. A. (1993): Biol. Neonate, 64,13-17. https://doi.org/10.1159/000243965
Barton, T. C. and Brown, D. A. J. (1964): J.Gen. Physiol., 47, 839-849, 3. Blum, S. F. and Oski, F. A. (1969): Pediatrics, 43, 396-401. https://doi.org/10.1542/peds.43.3.396
Canessa, M. (1984): In "Recent clinical and experimental advances", Vol. 3: "Erythrocytes membranes". A. R. Liss. New York, pp.293- 315.
Chow, E. I. H. and Chen D. (1982): Biochim.Biophys. Acta, 685, 196-202. https://doi.org/10.1016/0005-2736(82)90098-0
Duhm J., Eiseenried, F., Becher, B. F. and Greil W. (1976): Pflttgers Arch., 364, 147-155. https://doi.org/10.1007/BF00585183
Dunham, P. B. and Ellory, J. C. (1981): J. Physiol., 318, 511-530. https://doi.org/10.1113/jphysiol.1981.sp013881
Ehrlich, B. E. and Diamond, J. M. (1979): Cell Physiol., 6, C102-C110. https://doi.org/10.1152/ajpcell.1979.237.1.C102
Fukuda, M., Dell, A. and Fukuda, M. (1984): J. Biol. Chem., 259, 4782-4791. https://doi.org/10.1016/S0021-9258(17)42915-2
Funder, J., Tosteson, D. C. and Wieth, J. O. (1978): J. Gen. PhysioL, 71, 721 -746. https://doi.org/10.1085/jgp.71.6.721
Hass, M. and McManus, J. (1983): Am. J. Physiol., 245, C235-C240. https://doi.org/10.1152/ajpcell.1983.245.3.C235
Hunt, S. C., Williams, R. R., Smith, J. B., Ash, O. K. (1986): Hypertension, 8, 30-36. https://doi.org/10.1161/01.HYP.8.1.30
Linderkamp, O., Wu, P. Y. K. and Meiselman, H. J. (1983): Pediat. Res., 17, 250-253. https://doi.org/10.1203/00006450-198304000-00003
Matoth, Y., Zaizov, R., Varsano, I. (1971): Acta Paed.Scand. 60, 317-323. https://doi.org/10.1111/j.1651-2227.1971.tb06663.x
Matovcik, L. M., Chiu, D., Lubin, B., Mentzer, W. C., Lane, P. A., Mohandas, N. and Schrier, S. L. (1986): Pediat. Res., 20, 1091-1096. https://doi.org/10.1203/00006450-198611000-00006
Pandey, G. N., Sarkady, B., Haas, M., Gunn, R. B., Davis, J. M. and Tosteson, D. C. (1978): J. Gen. Physiol., 72, 23-247.. https://doi.org/10.1085/jgp.72.2.233
Resnick, L. M., Barbagallo, M., Gupta, R. K., Laragh J. H. (1993): Am. J. Hypertens., 6, 413- 417. https://doi.org/10.1093/ajh/6.5.413
Rosskopf, D., Dusing, R. and Siffert, W. (1993): Hypertension, 21, 607-617. https://doi.org/10.1161/01.HYP.21.5.607
Rutherford, P. A., Thomas, T. H., Carr, S. J. and Taylor, R., Wilkinson, R. (1992): Clin. Sci., 82, 301-307. https://doi.org/10.1042/cs0820301
Serrani, R. E. and Corchs, J. L. (1987): Arch. InL Physiol. Biochim., 95, 341-346.
Serrani, R. E., Venera, G., Gioia, I. A. and Corchs, J. L. (1990): Arch. Int. Physiol. Biochem., 98, 27-34. https://doi.org/10.3109/13813459009115734
Stein, W. D. (1986): In "Transport and diffusion across cell membranes". Academic Press, London, pp.231-361. https://doi.org/10.1016/B978-0-12-664660-3.50009-0
Tavassoli, M. (1991): Blood Cells, 1, 269-281.