Platelets isolated by albumin gradient retain normal activation pathways

A.M. Vecino
J.L. Navarro
J.M. Cesar
52

Abstract

Isolated platelets from samples with low counts produce technical problems. Albumin gradient (AG) has been shown to be useful for this purpose, preserving the aggregating response of these cells. The influence of this method in the enzymatic pathways that regulate the platelet activation is studied. Platelets were isolated by either AG or conventional centrifugation methods and labelled with C-14-arachidonic acid (C-14-AA). Isolated platelets were activated with thrombin (5 U/ml) and lipids were extracted according to Bligh and Dyer. Platelet phospholipids and prostanoids were resolved by TLC. The incorporation of C-14-AA by platelets was similar by both methods (31.7 ± 18 % versus 47.2 ± 6.9 %), as well as the distribution of C-14-AA in the five major platelet phospholipids. Formation of radioactive thromboxane B2, hydroxyheptadecatrienoic acid and hydroxyeicosatetraenoic acid by activated platelets was also similar by both methods. These findings suggest that
platelet isolation by albumin gradient preserves the enzymatic pathways responsible for the activation of these cells.

Keywords:
Patelet isolation, Albumin gradient

Authors

A.M. Vecino
J.L. Navarro
J.M. Cesar

References

Bell, R..L., Kennedy, R..A. and Standford, N. (1979): Proc. Natl. Acad. Sti. USA, 76, 3238- https://doi.org/10.1073/pnas.76.7.32383241.

Bills, T. K., Smith, J. B. and Silver, M. J. (1977): J. Clin. Invest., 60, 1 -6. https://doi.org/10.1172/JCI108745

Bills, T., Smith, J. B. and Silver, J. M. (1976):Biochim. Biophys. Acta, 424, 302-314. https://doi.org/10.1016/0005-2760(76)90198-3

Born, G. V. R. (1962): Nature, 194, 927-928. https://doi.org/10.1038/194927b0

Bligh, E. G. and Dyer, W. J. (1959): Can. J. Biochem. Physiol., 37, 911-917. https://doi.org/10.1139/o59-099

Cesar, J. M. and Navarro, J. L. (1990): Bn J. Haematol., 74, 295-299. https://doi.org/10.1111/j.1365-2141.1990.tb02586.x

Chau, L. Y. and Tai, H. H. (1981): Biochem. Biophys. Res. Commun. 100, 1688-1695. https://doi.org/10.1016/0006-291X(81)90713-0

Hamberg, M., Svensson, J. and Samuelsson, B. (1975): Proc. Natl. Acad. Sti USA, 72, 2994- https://doi.org/10.1073/pnas.72.8.29942998.

Jorgensen, K. J.and Stoffersen, E. (1980):Thromb. Res., 17, 13-18. https://doi.org/10.1016/0049-3848(80)90289-3

Kramer, R. M., Pritzker, C. R. and Deykin, D. (1984): J. Biol. Chem., 259, 2403-2406. https://doi.org/10.1016/S0021-9258(17)43366-7

Lapctina, E. G. and Cuatrecasas, P. (1979): Biochim. Biophys. Acta, 573, 394-402. https://doi.org/10.1016/0005-2760(79)90072-9

Nutgeren, D. H. (1975): Biochim. Biophys. Acta, 380, 299-307. https://doi.org/10.1016/0005-2760(75)90016-8

Rittenhouse-Simmons, S. (1979): J. Clin. Invest., 63, 580-587. https://doi.org/10.1172/JCI109339

Silver, M. J., Smith, J. B., McKean, M. L. and Bills, T. K. (1980): In "Hemostasis, prostaglandins, and renal diseases". (Remuzzi, G., Mecca, G. and Gaetano, G., eds.). Raven Press, New York, pp. 159-173.

Walsh, P. N. (1972): Brit. J. Haematol., 22,205-217 https://doi.org/10.1111/j.1365-2141.1972.tb08801.x


Metrics

Search GoogleScholar



Downloads

Download data is not yet available.

Section

Articles

Most read articles by the same author(s)