Frederic Guerrero-Solé e-mail(Login required)

Main Article Content


Frederic Guerrero-Solé e-mail(Login required)



The news media have a strong influence on people’s perception of reality. But despite claims to objectivity, media organizations are, in general, politically biased (Patterson & Donsbach, 1996; Gaebler, 2017). The link between news media outlets and political organizations has been a critical question in political science and communication studies. To assess the closeness between the news media and particular political organizations, scholars have used different methods such as content analysis, undertaking surveys or adopting a political economy view. With the advent of social networks, new sources of data are now available to measure the relationship between media organizations and parties. Assuming that users coherently retweet political and news information (Wong, Tan, Sen & Chiang, 2016), and drawing on the retweet overlap network (RON) method (Guerrero-Solé, 2017), this research uses people’s perceived ideology of Spanish political parties (CIS, 2020) to propose a measure of the ideology of news media in Spain. Results show that scores align with the result of previous research on the ideology of the news media (Ceia, 2020). We also find that media outlets are, in general, politically polarized with two groups or clusters of news media being close to the left-wing parties UP and PSOE, and the other to the right-wing and far-right parties Cs, PP, and Vox. This research also underlines the media’s ideological stability over time.


Media ideology, Twitter, news media, politics, political parties, Spain


An, J., Cha, M., Gummadi, K., Crowcroft, J. & Quercia, D. (2012). Visualizing media bias through Twitter. In Proceedings of the International AAAI Conference on Web and Social Media (pp. 2-5). Dublin: AAAI.

Barberá, P., Jost, J. T., Nagler, J., Tucker, J. A. & Bonneau, R. (2015). Tweeting From Left to Right: Is Online Political Communication More Than an Echo Chamber?, Psychological Science, 26(10), 1531–1542.

Baumgartner, F. R. & Chaqués Bonafont, L. (2015). All news is bad news: Newspaper coverage of political parties in Spain. Political Communication, 32(2), 268-291.

Bosi, L., Lavizzari, A. & Voli, S. (2020). Representation of Youth in the Public Debate in Greece, Italy, and Spain: Does the Political Leaning of Newspapers Have Any Effect?, American Behavioral Scientist, 64(5), 620-637.

Bruns, A. & Highfield, T. (2013). Political networks on Twitter: tweeting the Queensland state election. Information, Communication & Society, 16, 667-691.

Ceia, V. (2020). Digital Ecosystems of Ideology: Linked Media as Rhetoric in Spanish Political Tweets. Social Media and Society, 6(2).

Cohen, R. & Ruths, D. (2013). Classifying political orientation on Twitter: It’s not easy! In Proceedings of the 7th International Conference on Weblogs and Social Media (pp. 91-99). Cambridge, MA: ICWSM 2013.

Conover, M. D., Gonçalves, B., Ratkiewicz, J., Flammini, A. & Menczer, F. (2011). Predicting the political alignment of twitter users. In Proceedings - 2011 IEEE International Conference on Privacy, Security, Risk and Trust and IEEE International Conference on Social Computing, PASSAT/SocialCom 2011 (pp. 192-199).

D’Allesio, D. & Allen, M. (2000). Media bias in presidential elections: a meta analysis. Journal of Communication, 50(4), 133-156.

David, E., Zhitomirsky-Geffet, M., Koppel, M. & Uzan, H. (2016). Utilizing Facebook pages of the political parties to automatically predict the political orientation of Facebook users. Online Information Review, 40(5), 610-623. 10.1108/OIR-09-2015-0308

Eady, G., Nagler, J., Guess, A., Zilinsky, J. & Tucker, J. A. (2019). How Many People Live in Political Bubbles on Social Media? Evidence From Linked Survey and Twitter Data. SAGE Open.

El Español (19 October 2020). El Español logra su récord con 23,3 millones de usuarios: supera a El País y ABC y se queda a un 5 % de El Mundo. Retrieved from

Falck, F., Marstaller, J., Stoehr, N., Maucher, S., Ren, J., Thalhammer, A. & Studer, R. (2020). Measuring Proximity Between Newspapers and Political Parties: The Sentiment Political Compass. Policy and Internet, 12(3), 367-399.

Gautam, G. & Yadav, D. (2014). Sentiment Analysis of Twitter Data Using Machine Learning Approaches and Semantic Analysis. In 2014 7th International Conference on Contemporary Computing (pp. 437-442). IEEE Conference Location: Noida.

Gentzkow, M., Petek, N., Shapiro, J. M. & Sinkinson, M. (2015). Do newspapers serve the state? Incumbent party influence on the US press 1869-1928. Journal of the European Economic Association, 13(1), 29-61. 10.1111/jeea.12119

Golbeck, J. & Hansen, D. (2014). A Method for Computing Political Preference Among Twitter Followers. Social Networks, 36, 177-184.

Guerrero-Solé, F. & López-González, H. (2019). Government Formation and Political Discussions on Twitter. An Extended Model for Quantifying Political Distances in Multiparty Democracies. Social Science Computer Review, 37, 3-21.

Guerrero-Solé, F. (2018). Interactive Behavior in Political Discussions on Twitter: Politicians, Media, and Citizens’ Patterns of Interaction in the 2015 and 2016 Electoral Campaigns in Spain. Social Media + Society, 4(4), 1-16.

Guerrero-Solé, F. (2017). Community detection in political discussions on Twitter. An application of the Retweet Overlap Network method to the Catalan process towards independence. Social Science Computer Review, 35(2), 244-261.

Guerrero-Solé, F., Corominas-Murtra, B. & López-González, H. (2014). Pacts with Twitter. Predicting voters’ indecision and preferences for coalitions in multiparty systems. Information, Communication & Society, 17(10), 1280–1297.

Gyftopoulos, S., Drosatos, G., Stamatelatos, G. & Efraimidis, P. S. (2020). A Twitter-based approach of news media impartiality in multipartite political scenes. Social Network Analysis and Mining, 10(1).

Hallin, D. C. & Mancini, P. (2004). Comparing media systems: Three models of media and politics. New York, NY: Cambridge University Press.

Haselmayer, M., Wagner, M. & Meyer, T. M. (2017). Partisan Bias in Message Selection: Media Gatekeeping of Party Press Releases. Political Communication, 34(3), 367-384.

Kim, M. & Park, H. W. (2012). Measuring Twitter-based political participation and deliberation in the South Korean context by using social network and Triple Helix indicators. Scientometrics, 90, 121-140.

Kosinski, M., Stillwell, D. & Graepel, T. (2013). Private traits and attributes are predictable from digital records of human behavior. Proceedings of the National Academy of Sciences of the United States of America, 110(15), 5802-5805.

Kosinski, M., Wang, Y., Lakkaraju, H. & Leskovec, J. (2016). Mining big data to extract patterns and predict real-life outcomes. Psychological Methods, 21(4), 493-506.

Labio, A. & Pineda, A. (2016). Leftward shift, media change? Ideology and politics in Spanish online-only newspapers after the 15-M movement. International Journal of Communication, 10, 2661-2682.–8036/20160005

Llorens, C. (2010). Spain’s media concentration policy: A patchwork crucial to the understanding of the Spanish media system. International Journal of Communication, 4, 844-864.

Markowetz, A., Błaszkiewicz, K., Montag, C., Switala, C. & Schlaepfer, T. E. (2014). Psycho-Informatics: Big Data shaping modern psychometrics. Medical Hypotheses, 82, 405-411.

Mas Manchón, L. & Guerrero-Solé, F. (2019). The use of hashtags as a political branding strategy. Revista internacional de relaciones públicas, 17(9), 5-24. RIRP-17-2019-02-05-24

Obschonka, M., Lee, N., Rodríguez-Pose, A., Eichstaedt, J. C. & Ebert, T. (2020). Big data methods, social media, and the psychology of entrepreneurial regions: capturing cross-county personality traits and their impact on entrepreneurship in the USA. Small Business Economics, 55, 567-588.

Park, S., Ko, M., Kim, J., Liu, Y. & Liu, Song, J. (2011). The politics of comments: Predicting political orientation of news stories with commenters’ sentiment patterns. In Proc. ACM Conf. Comput. Supported Cooperative Work (pp. 113–122). Hangzhou, China.

Park, G., Andrew Schwartz, H., Eichstaedt, J. C., Kern, M. L., Kosinski, M., Stillwell, D. J., Ungar, L. H. & Seligman, M. E. P. (2015). Automatic personality assessment through social media language. Journal of Personality and Social Psychology, 108(6), 934-952.

Patterson, T. E. & Donsbach, W. (1996). News decisions: Journalists as partisan actors. Political Communication, 13, 455-468.

Pew Research (2018). News Media and Political Attitudes in Spain. Retrieved from

Renoust, B., Cheung, G. & Satoh, S. (2017). Estimating political leanings from mass media via graph-signal restoration with negative edges. In Proceedings - IEEE International Conference on Multimedia and Expo (pp. 1009-1014). Hong Kong: IEEE.

Ribeiro, F. N., Henrique, L., Benevenuto, F., Chakraborty, A., Kulshrestha, J., Babaei, M. & Gummadi. K. P. (2018). Media bias monitor: Quantifying biases of social media news outlets at large-scale. In Proceedings of the 12th International AAAI Conference on Web and Social Media, ICWSM ‘18 (pp. 290-299). Palo Alto, CA: AAAI.

Sampedro, V. & Seoane Pérez, F. (2008). The 2008 Spanish general elections: “Antagonistic bipolarization” geared by presidential debates, partisanship, and media interest. The International Journal of Press/Politics, 13(3), 336-344.

Schena, J., Almiron, N. & Pineda, A. (2018). Mapping press ideology. A methodological proposal to systematise the analysis of political ideologies in newspapers. Observatorio, 12(3), 17-47.

Stefanov, P., Darwish, K., Atanasov, A. & Nakov, P. (2020). Predicting the Topical Stance and Political Leaning of Media using Tweets. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 527–537). ACL.

Tay, L., Woo, S. E., Hickman, L. & Saef, R. M. (2020). Psychometric and Validity Issues in Machine Learning Approaches to Personality Assessment: A Focus on Social Media Text Mining. European Journal of Personality, 34, 826-844.

Van Camp, K. (2018). Issue ownership as a determinant of political parties’ media coverage. Communications: The European Journal of Communication Research, 43(1), 25-45.

van Dijk, T. A. (1995). Discourse semantics and ideology. Discourse & Society, 6(2), 243-289.

Wong, F. M. F., Tan, C. W., Sen, S. & Chiang, M. (2016). Quantifying political leaning from tweets, retweets, and retweeters. IEEE Transactions on Knowledge and Data Engineering.

Youyou, W., Kosinski, M. & Stillwell, D. (2015). Computer-based personality judgments are more accurate than those made by humans. Proceedings of the National Academy of Sciences of the United States of America, 112(4), 1036-1040.

Zhitomirsky-Geffet, M., David, E., Koppel, M. & Uzan, H. (2016). Utilizing overtly political texts for fully automatic evaluation of political leaning of online news websites. Online Information Review, 40(3), 362-379.


Search GoogleScholar


Article Details