Sergio Monge-Benito e-mail(Login required) , Angeriñe Elorriaga-Illera e-mail(Login required) , Elena Olabarri-Fernández e-mail(Login required)

Main Article Content

Authors

Sergio Monge-Benito e-mail(Login required)
Angeriñe Elorriaga-Illera e-mail(Login required)
Elena Olabarri-Fernández e-mail(Login required)

Abstract

905

This article analyses follower response to the growing number of product endorsements present in YouTube videos published under the username “Verdeliss” by Estefanía Unzu Ripoll, Spain’s most popular YouTube influencer on the topic of maternity and childcare. Results of a self-administered online survey of 949 Verdeliss followers focused on their individual evaluations of source attributes indicate that Unzu Ripoll’s YouTube fans tend to buy products she endorses on the basis of her perceived likeability and expertise, and that the overall influence she exerts on their purchasing decisions is slight. In closing, the authors offer insights into how social media influencers can enhance the effectiveness of their online endorsements and identify tactics brands can employ to ensure that the influencers they collaborate with are optimally suited to promote their products.

Keywords

Source attributes, influencers, YouTubers, followers, audience research, audience response, celebrity endorsement

References

Armstrong, J. S. & Overton, T. S. (1977). Estimating nonresponse bias in mail surveys. Journal of marketing research, 14(3), 396-402. http://www.doi.org/10.1177/002224377701400320

Amos, C., Holmes, G. & Strutton, D. (2008) Exploring the relationship between celebrity endorser effects and advertising effectiveness: A quantitative synthesis of effect size. International Journal of Advertising, 27(2), 209–234. http://www.doi.org/10.1080/02650487.2008.11073052.

Beerli Palacio, A. & Martín Santana, J. D. (2009) Factores que influyen en la eficacia de la publicidad con famosos: una aplicación empírica en el medio revistas. International Marketing Trends Conference Archive. Retrieved from https://goo.gl/aL25Vx (accessed 28 June 2018).

Belch, G. E. & Belch, M. A. (2013) A content analysis study of the use of celebrity endorsers in magazine advertising. International Journal of Advertising, 32(3), 369–389. http://www.doi.org/10.2501/IJA-32-3-369-389.

Bergkvist, L. & Zho, K. Q. (2016) Celebrity endorsements: A literature review and research agenda. International Journal of Advertising, 35(4), 642–663. http://www.doi.org/10.1080/02650487.2015.1137537.

Bergkvist, L., Hjalmarson, H. & Magi, A. (2016) A new model of how celebrity endorsements work: Attitude toward the endorsement as a mediator of celebrity source and endorsement effects. International Journal of Advertising, 35(2), 171–84. http://www.doi.org/10.1080/02650487.2015.1024384

Casaló, L. V., Flavián, C. & Ibáñez-Sánchez, S. (2018). Influencers on Instagram: Antecedents and consequences of opinion leadership. Journal of Business Research. In press, corrected proof. Available online 20 July 2018. http://www.doi.org/10.1016/j.jbusres.2018.07.005

Carter, D. (2016). Hustle and Brand: The Sociotechnical Shaping of Influence. Social Media + Society, 2(3), 1-12. http://www.doi.org/10.1177/2056305116666305

Cha, M. H., Haddadi, F., Benevenuto & Gummadi, P. K. (2010). Measuring user influence in Twitter: The million follower fallacy. Paper presented at the Fourth International AAAI Conference on Weblogs and Social Media, May 23–26, Washington, DC.

Cheong, H. .J. & Morrison, M. A. (2008). Consumers’ reliance on product information and recommendations found in UGC. Journal of Interactive Advertising, 8(2), 38-49. http://www.doi.org/10.1080/15252019.2008.10722141

Choi, S. M. & Rifon, N. (2012). It is a match: the impact of congruence between celebrity image and consumer ideal self on endorsement effectiveness. Psychology & Marketing, 29(9), 639-650. http://www.doi.org/10.1002/mar.20550

Colliander, J. & Dahlén, M. (2011). Following the fashionable friend: The power of social media. Weighing publicity effectiveness of blogs versus online magazines. Journal of Advertising Research, 51, 313–20. http://www.doi.org/10.2501/JAR-51-1-313-320

De Veirman, M., Cauberghe, V. & Hudders, L. (2017). Marketing through Instagram influencers: the impact of number of followers and product divergence on brand attitude. International Journal of Advertising, 36(5), 798–828. http://www.doi.org/10.1080/02650487.2017.1348035

Díaz, L. (2017). Soy marca: quiero trabajar con “influencers”. Influencer marketing. Barcelona: Profit.

Elorriaga-Illera, A. & Monge-Benito, S. (2018). The professionalization of YouTubers: the case of Verdeliss and the brands. Revista Latina de Comunicación Social, 73, 37–54. http://www.doi.org/10.4185/RLCS-2018-1244en

Erdogan, B. Z. (1999). Celebrity endorsement: A literature review. Journal of Marketing Management, 15(4), 291–314. http://www.doi.org/10.1362/026725799784870379

Erdogan, Z., Baker, R. & Tagg, S. (2001). Selecting celebrity endorsers: the practitioner perspective. Journal of Advertising Research, 41(3), 39–48. http://www.doi.org/10.2501/JAR-41-3-39-48

Eisend, M. & Langner, T. (2010) Immediate and delayed advertising effects of celebrity endorsers’ attractiveness and expertise. International Journal of Advertising, 29(4), 527–46. http://www.doi.org/10.2501/S0265048710201336

Feng, Y. (2016). Are you connected? Evaluating information cascades in online discussion about the RaceTogether campaign. Computers in Human Behavior, 54, 43–53. http://www.doi.org/10.1016/j.chb.2015.07.052.

Forbes, K. (2016). Examining the Beauty Industry’s Use of Social Influencers. Elon Journal of Undergraduate Research in Communications, 7(2,) Fall.

Greve, G. & Schlüschen, A. (2018). From Customer Relationship Management to Influencer Relationship Management. In Diverse Methods in Customer Relationship Marketing and Management (pp. 80-91). IGI Global. http://www.doi.org/0.4018/978-1-5225-5619-0.ch005

Groves, R. M. (2006). Nonresponse rates and nonresponse bias in household surveys. Public opinion quarterly, 70(5), 646-675. http://www.doi.org/10.1093/poq/nfl033

Groves, R. M. & Peytcheva, E. (2008). The impact of nonresponse rates on nonresponse bias: a meta-analysis. Public opinion quarterly, 72(2), 167-189. http://www.doi.org/10.1093/poq/nfn011

Han, H. (2013). The healthcare hotel: Distinctive attributes for international medical travelers. Tourism Management, 36, 257-268. http://www.doi.org/10.1016/j.tourman.2012.11.016

Hellevik, O. (2016). Extreme nonresponse and response bias. Quality & Quantity, 50(5), 1969-1991. http://www.doi.org/10.1007/s11135-015-0246-5

Hughes, C., Swaminathan, V. & Brooks, G. (2019). Driving Brand Engagement Through Online Social Influencers: An Empirical Investigation of Sponsored Blogging Campaigns. Journal of Marketing, 83(5), 78-96. http://www.doi.org/10.1177/0022242919854374

Hsu, C. L., Chuan-Chuan Lin, J. & Chiang, H. S. (2013). The effects of blogger recommendations on customers’ online shopping intentions. Internet Research, 23(1), 69-88. http://www.doi.org/10.1108/10662241311295782.

Hwang, Y. (2015). Does opinion leadership increase the followers on Twitter? International Journal of Social Science and Humanity, 5(3), 258–64. http://www.doi.org/10.7763/IJSSH.2015.V5.464.

Jiménez-Castillo, D. & Sánchez-Fernández, R. (2019). The role of digital influencers in brand recommendation: Examining their impact on engagement, expected value and purchase intention. International Journal of Information Management, 49, 366-376. http://www.doi.org/0.1016/j.ijinfomgt.2019.07.009

Kamins, M. A. (1990) An investigation into the match-up hypothesis in celebrity advertising: when beauty may be only skin deep. Journal of Advertising, 19(1), 4–13. http://www.doi.org/10.1080/00913367.1990.10673175

Kamins, M. A. & Gupta, K. (1994) Congruence between spokesperson and product types: a matchup hypothesis perspective. Psychology and Marketing, 11(6), 569–586. http://www.doi.org/10.1002/mar.4220110605

Keeter, S., Miller, C., Kohut, A., Groves, R. M. & Presser, S. (2000). Consequences of reducing nonresponse in a national telephone survey. Public opinion quarterly, 64(2), 125-148. http://www.doi.org/10.1086/317759.

Knoll, J., Schramm, H., Schallhorn, C. & Wynistorf, S. (2015) Good guy vs. bad guy: The influence of parasocial interactions with media characters on brand placement effects. International Journal of Advertising, 34(5), 720–743. http://www.doi.org/10.1080/02650487.2015.1009350

Lieber, C. (2014). Clicks, Likes, Cash: How YouTube Beauty Stars Threw the Industry for a Loop. Racked. Retrieved from https://goo.gl/6UEnxP

Liu, S., Jiang, C., Lin, Z., Ding Y., Duan, R. & Xu Z. (2015). Identifying effective influencers based on trust for electronic word-of-mouth marketing: A domain-aware approach. Information Sciences, 306, 34–52. http://www.doi.org/10.1016/j.ins.2015.01.034

Lynch, J. & Schuler, D. (1994). The matchup effect of spokesperson and product congruency: A schema theory interpretation. Psychology & Marketing, 11(5), 417-445. http://www.doi.org/10.1002/mar.4220110502

Lord, K. R. & Putrevu, S. (2009) Informational and transformational responses to celebrity endorsements. Journal of Current Issues & Research in Advertising, 31(1), 1–13. http://www.doi.org/10.1080/10641734.2009.10505253

McCormick, K. (2016). Celebrity endorsements: Influence of a product-endorser match on Millennials attitudes and purchase intentions. Journal of Retailing and Consumer Services, 32, 39-45. http://www.doi.org/10.1016/j.jretconser.2016.05.012

McGuire, W. J. (1985). Attitudes and attitude change. In L. Gardner & E. Aronson (Eds.), Handbook of Social Psychology (pp. 233–346). Hillsdale, NJ: Lawrence Erlbaum Associates.

Ohanian, R. (1991) The impact of celebrity spokespersons’ perceived image on consumers’ intention to purchase. Journal of Advertising Research, 31(1), 46–54.

Pradhan, D., Duraipandian I. & Sethi, D. (2016). Celebrity endorsement: how celebrity-brand-user-personality congruence affects brands attitude and purchase intention. Journal Marketing Communications, 7(5), 1-18. http://www.doi.org/10.1080/13527266.2014.914561

Quercia, D., Ellis, J., Capra, L. & Crowcroft, J. (2011). In the mood for being influential on Twitter. Paper presented at the 2011 IEEE International Conference on Privacy, Security, Risk and Trust (PASSAT) and the 2011 IEEE Third International Conference on Social Computing (SocialCom) MIT, October 9–11, Boston, MA. IEEE Xplore Digital Library http://www.doi.org/10.1109/PASSAT/SocialCom.2011.27

Romero, D. M., Galuba, W., Asur, S. & Huberman, B. A. (2011) Influence and passivity in social media. Paper presented at the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, September 5-9, Athens. http://www.doi.org/10.1007/978-3-642-23808-6_2

Rothe, H. & Wicke, S. (2018) Content-Influencer-Fit: Improving Reach and Impact of Content for Influencers in eWOM. In Proceedings of Multikonferenz Wirtschaftsinformatik 2018, Luneburg. Retrieved from https://www.researchgate.net/publication/323934890_Content-Influencer-Fit_Improving_Reach_and_Impact_of_Content_for_Influencers_in_eWOM.

Silvera, D. H. & Austad, B. (2004). Factors predicting the effectiveness of celebrity endorsement advertisements. European Journal of Marketing, 38(11/12), 1509-1526. http://www.doi.org/10.1108/03090560410560218

Schwemmer, C. & Ziewiecki, S. (2018). Social Media Sellout – The Increasing Role of Product Promotion on YouTube. Social Media and Society, July-September 2018, 1-20. http://www.doi.org/10.1177/2056305118786720

Uzunoglu, S. M. & Kip, S. M. (2014). Brand communication through digital influencers: leveraging blogger engagement. International Journal of Information Management, 34, 592–602. http://www.doi.org/10.1016/j.ijinfomgt.2014.04.007

Westenberg, W. (2016). The influence of YouTubers on teenagers. Master Thesis. University of Twente. Retrieved from http://essay.utwente.nl/71094/1/Westenberg_MA_BMS.pdf

Wilson, E. J. & Sherrell, D. L. (1993). Source effects in communication and persuasion research: A meta-analysis of effect size. Journal of the Academy of Marketing Science, 21(2). 101. http://www.doi.org/10.1007/BF02894421

Yoganarasimhan, H. (2012). Impact of social network structure on content propagation – A study using YouTube data. Quantitative Marketing and Economics, 10(1), 111–150. http://www.doi.org/10.1007/ s11129-011-9105-4

Metrics





Search GoogleScholar


Details

Article Details

Section
Articles